

SOCIAL HOUSING BUNDLE 3 PROPOSED DEVELOPMENT AT BURGAGE MORE

Drainage and Watermain Design Report

Document status							
Version	Purpose of document	Authored by	Reviewed by	Approved by	Review date		
P01	Draft Issue for Review	PMGB	DK	DK	13/08/2021		
P02	Draft Issue for LA Review	PMGB	DK	DK	02/09/2021		
P03	Issue for Planning	PMGB	DK	DK	12/11/2021		

Approval for issue	
DK	12 November 2021

© Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use , make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy.

No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited.

Prepared by:

Prepared for:

RPS

Wicklow County Council

Contents

1	INTRODUCTION	1
1.1	Site Characteristics	1
1.1.1	Existing Services	1
2	FOUL FLOWS	3
2.1	Foul Sewer Design Procedure	3
2.2	Foul Services design parameters	3
2.3	Pipe and manhole numbering	4
2.4	Foul loadings from proposed development	4
3	SURFACE WATER FLOWS	5
3.1	Storm Water Design Procedure	5
3.2	Surface Water Impact Assessment	5
3.2.1	Criterion 1: River Water Quality Protection:	5
3.2.2	Criterion 2: River Regime Protection	6
3.2.3	Criterion 3: Level of Service (flooding) for the site.	6
3.2.4	Criterion 4: River flood protection	7
3.3	Site Specific SUDS Measures	7
3.4	Design Parameters	8
3.4.1	Proposed Storm Water Services	8
3.5	Pipe and Manhole Numbering	9
3.6	Hydrocarbon / Oil Interceptor	9
3.7	Infiltration Design	10
4	WATER SUPPLY / IW PRE CONNECTION ENQUIRY	13
5	FLOODING	14

Tables

Table 2-1 Design Parameters	3
Table 3-1 Design Parameters Road Runoff Surface Network	8
Table 3-2 Extract from TII Publication – DN-DNG-030651	1

Appendices

Appendix A Drainage Layout, Detailed Drawings	15
Appendix B Design Calculations	16
Appendix C Surface Water Infiltration Design Output and Sizing	20
Appendix D Hydrocarbon Interceptor – Brochure	23
Appendix E Confirmation of Feasibility – Irish Water	24
Appendix F Hydrant Testing Results – SES Water Management	25
Appendix G Aquacell – Cellular Storage System	26
Appendix H CFRAM Mapping	27

SHB3-BLN-CS-RPS-RP-001 Drainage and Watermain Planning Design Report | P03 | 12th November 2021

1 INTRODUCTION

RPS are the appointed Civil and Structural Engineering Technical Advisors for the proposed residential development at Burgage More Road, Blessington, County Wicklow. This project will deliver 106 dwellings to Wicklow County Council Planning Authority.

New watermain, storm water and foul water networks will be constructed to service the proposed development. The foul water network will outfall to an existing Irish Water (IW) system on the Burgage more road. The storm water generated on site will infiltrate to ground. The watermain, storm water and foul water drainage proposals are shown in **Appendix A**.

The maximum occupancy for this development will be approximately 286 residents. The proposed maximum design population for the purposes of drainage is approximately 286 residents. This report addresses the following design streams:

- Foul flows which are dealt with in Section 2 of the report,
- Surface water flows, and infiltration are dealt with in Section 3 of the report, and
- Water supply to the site which is dealt with in Section 4 of the report.

This report should be read in conjunction with the following RPS drawings, being submitted with this planning application:

- SHB3-BLN-CS-RPS-DR- DA001 Watermain Layout
- SHB3-BLN-CS-RPS-DR- DA002 Foul & Storm Water Network Layout

1.1 Site Characteristics

Blessington, is located on the Kildare/Wicklow border. The site on Burgage More Road is located c1.3m south of the town centre to the south east of a local junction which is the intersection of the N81 heading East and the Burgage More Road which itself heads north to town and to the south comes to a dead end; terminating at the popular greenway walking route.

Currently the Burgage More Road is the only road frontage onto the site which itself is a relatively flat green field site of c 3.235 ha which is located to the west of Poulaphouca Reservoir Special Protection Area (SPA). A private residence and farmlands bound the site to the south. The site and the lands to the north and east are within the ownership of WCC.

1.1.1 Existing Services

A topographical and underground utility survey was completed by NCW Surveys in June 2021. This survey verified the location of the existing services as determined by the equipment and methodology employed by the surveyor. The survey provides information on service locations, indicative depth, and the nature (type) of the underground service/utility. This information is used to assist with preparing the drainage design for the proposed development.

1.1.1.1 Existing Foul and Watermain Infrastructure

IW database shows a 375mm Ø concrete foul water network and a 150mm Ø uPVC watermain on the Burgage more road. NCW survey has confirmed the location and diameter of the foul water network and the location of the watermain. It is proposed to tie into the existing foul water network and to connect to the existing watermain on the Burgage more road.

RPS propose to connect to existing IW infrastructure as shown in drawings **SHB3-BLN-CS-RPS-DR-DA001** and **SHB3-BLN-CS-RPS-DR-DA002**.

1.1.1.2 Existing Storm Water Infrastructure

IW database shows a 375mm Ø storm water pipe network mapped to the north east of the site, NCW survey confirms this. The invert levels of the available storm water network are above that of the subject site. In light of the fact that there isn't a suitably deep outfall manhole and to comply with objective WI12 of WCC's county development plan, it is proposed to discharge surface water to on-site infiltration systems.

• WI12 - Ensure the implementation of Sustainable Urban Drainage Systems (SUDS) and in particular, to ensure that all surface water generated in a new development disposed of on-site or attenuated and treated prior to discharge to an approved surface water system.

RPS proposed Storm Water infrastructure is shown in drawing SHB3-BLN-CS-RPS-DR-DA002.

2 FOUL FLOWS

2.1 Foul Sewer Design Procedure

The proposed foul sewerage system was designed using the Wallingford Tables and Microdrainage design software. Wastewater loadings were based on EPA Guidance document, 'Treatment Systems for Small Communities, Business, Leisure Centres and Hotels'.

Drainage calculations submitted in **Appendix B** have been generated by 'Micro Drainage' flow modelling software, and the 'Hydraulic Design for Gravity Sewers' method to Irish Water Code of Practice for Wastewater Infrastructure. Gradients should be selected so that self-cleansing velocities can be maintained under normal operating conditions. The range of flow velocity within the sewers should be between 0.75m/s at low flow and 3m/s, when flowing full.

The proposed foul drainage network will be constructed in accordance with Irish Water Code of Practice for Wastewater Infrastructure, The Building Regulations 'Part H' & the Regional Code of Practice for Drainage Works. The sewers will be compliant with the requirements of the Irish Water Code or Practice for Wastewater Infrastructure and will be from 150mm to 225mm in diameter. Foul sewers within the building plots may be as small as 100mm dia. In accordance with TGH H – Drainage specifications and with Irish Water Code of Practice.

Foul water will outfall to the existing IW foul water network located to north west corner of the proposed development via an existing manhole, See drawing **SHB3-BLN-CS-RPS-DR- DA002** for details.

2.2 Foul Services design parameters

The following parameters were used for the basis of design (refer to Table 2-1).

Table 2-1 Design Parameters

Parameters	Values	Reference
Flow Rates	Varies	Irish Water Code of Practice for Wastewater Infrastructure.
Peak Flow	6.0 x Dry Weather Flow (DWF) (based on a 10hr working day)	Irish Water Code of Practice for Wastewater Infrastructure.
Min Velocity	0.75m/s.	Irish Water Code of Practice for Wastewater Infrastructure & Sewers for Adoption
Pipe Roughness	1.50mm	(Colebrook/White)
Pipe Cover	 1.2m minimum without concrete encasement– light trafficked areas 0.6m minimum without concrete encasement – gardens 	Irish Water Code of Practice for Wastewater Infrastructure Technical Guidance Document H – Drainage and Waste Water Disposal

SHB3-BLN-CS-RPS-RP-001 Drainage and Watermain Planning Design Report | P03 | 12th November 2021

2.3 Pipe and manhole numbering

The manhole numbers define the structure of the network. The foul water manholes are labelled such that labels in the direction of flow are typically in increasing order. F01, F02, etc. is used for foul sewers located inside the site boundary of this development. Existing manholes will be labelled EF01 (refer to Drawing **SHB3-BLN-CS-RPS-DR- DA002 in Appendix A**).

2.4 Foul loadings from proposed development

Foul loadings from the proposed development are shown in **Table 2.2**. The maximum foul flow from the proposed development has been calculated as 3.28 litres/sec. This value is based on a peak factor of 6:

- 446I/day per residential unit (based on 2.7 persons per unit x 150I/person/day, + a 10% increase factor).
- 446l/day/unit x 106 units = 47,276 l/day = 47.276 m3/day;
- 0.54 l/sec Average flow (1 DWF);
- 3.28 l/sec Peak Flow (6 DWF Population between 0 and 750)

The minimum capacity of any sewer in the proposed design is **29.9 litres/sec** as such the design can cater for the proposed developments flow. For detailed output from the foul sewer design refer to **Appendix B.**

3 SURFACE WATER FLOWS

3.1 Storm Water Design Procedure

The site is approximately 3.235 ha and has a total impermeable area of 0.853ha which is to be drained to the new proposed surface water systems. Storm flows will infiltrate to ground.

All proposed developments must ensure that SUDS are incorporated into the development. SUDS requires that post development run-off rates be maintained at the equivalent to, or lower than, the pre-development run-off levels. Thus, the development must be able to retain, within its boundaries, storm water volumes from extreme storm events up to and including a design for a 1 in 100 year storm event, more commonly expressed as a 1.0% AEP (Annual Exceedance Probability), while also allowing for climate change factors.

Any new development must have physical capacity to retain storm water volumes as directed under the Greater Dublin Strategic Drainage Study (GDSDS) and, if necessary, release this attenuated surface water runoff before it enters a natural watercourse or into a public sewer, which ultimately discharges to a water body. This is to ensure the highest possible standard of storm water quality. In this instance, Infiltration storage will be provided, designed to drain the site for storm events up to and including a 1 in 100 year event, including 20% for climate change.

The new surface water system was designed using Innovyze MicroDrainage software which is based on the Wallingford Tables and the Modified Rational Method of storm flow modelling. The rainfall and climate data used in all designs was extracted directly from maps built into the program. The M5-60, R, SAAR, soil infiltration values etc were all derived for the site. Such data is given in the appropriate appendices of this report of MicroDrainage outputs for surface and grey water networks, see **Appendix B**.

Ground investigation infiltration tests were undertaken by Priority Geotechnical Limited in August 2021 to assess the infiltration rate on site. The infiltration rates were found to be favourable to the design of an infiltration system. The design shows that the proposed surface water drainage system for this development can use infiltration systems within the open spaces to drain the site for storm events up to and including a 1 in 100 year event, including 20% for climate change. Infiltration design is outlined in **section 3.7** of this report.

3.2 Surface Water Impact Assessment

The management of surface water for the proposed development has been designed to comply with the policies and guidelines outlined in the GDSDS and with the requirements of WCC. The guidelines require the following 4 main criteria to be provided by the design:

3.2.1 Criterion 1: River Water Quality Protection:

Interception storage of at least 5mm, and preferably 10mm, of rainfall where runoff to the receiving water can be prevented. It is proposed that the overall drainage system, serving this development, will contain a range of surface water treatment methods such as:

- Car parking spaces on site to incorporate a permeable paving system;
- Interception storage and treatment within the site
- All road gullies to be trapped

- Intensive landscaping where possible
- Fuel separator and silt trap prior to entering the infiltration area.
- Tree pits
- Swales

3.2.2 Criterion 2: River Regime Protection

Surface water will infiltrate to ground via an infiltration system designed to meet the requirements of the GDSDS.

3.2.3 Criterion 3: Level of Service (flooding) for the site.

There are four sub-criteria for the required level of service, for a new development; as set out in the GDSDS Volume 2, Section 6.3.4 (Table 6.3):

- No flooding on site except where planned (30-year high intensity rainfall event);
- No internal property flooding (100-year high intensity rainfall event);
- No internal property flooding (100-year river event and critical duration for site) and;
- No flood routing off site except where specifically planned. (100-year high intensity rainfall event).

3.2.3.1 Sub-Criteria 3.1

The surface water drainage systems, serving the proposed development, have been designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding. Therefore, the system has capacity for the 30-year return period rainfall event without flooding. The performance of the proposed drainage system has been analysed for design rainfall events up to, and including, the 1% AEP event (including 20% for climate change) using the MicroDrainage Network Design Software, by Innovyze Inc. Refer to **Appendix B** for details of design criteria, calculations, and results. The analyses indicate that no flooding will occur for design rainfall events up to, and including, the 1% AEP.

3.2.3.2 Sub Criteria 3.2

The surface water drainage systems, serving the proposed development, have been designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding. The performance of the proposed drainage system in 100-year return period storm events (including 20% for climate change) has been analysed – Refer to **Appendix B** for calculations. The analyses show that no flooding will occur in 100-year return period storm events.

3.2.3.3 Sub Criteria 3.3

There is no apparent risk of internal property flooding. The maximum water level in the proposed infiltration system will not pose a risk to the proposed buildings. It is also noted that the surface water drainage network is designed with no flooding experienced in a 1 in 100 year rainfall event (including 20% for climate change).

3.2.3.4 Sub Criteria 3.4

The surface water drainage systems, serving the proposed development, have been designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding, so no flood routing off site will be experienced for such a rainfall event. The performance of the proposed drainage system in 100-year return period storm events (including 20% for climate change) has been analysed – Refer to **Appendix B** for calculations. The analyses show that no flooding will occur in 100-year return period storm events.

3.2.4 Criterion 4: River flood protection

Storage is to be provided for the 100-year return period rainfall event (including an increased 20% rainfall intensity; to allow for climate change). Surface water will infiltrate to ground via an infiltration system designed to meet the requirements of the GDSDS. Refer to **Appendix B** for details of hydraulic modelling calculations of attenuation and infiltration systems, as carried out using MicroDrainage software by Innovyze Inc.

3.3 Site Specific SUDS Measures

Sustainable Drainage Systems (SuDS) were considered for the site, in line with recommendations of Greater Dublin Strategic Drainage Strategy (GDSDS). SuDS are a method of replicating the natural characteristics of rainfall runoff from any site. The various types of SuDS considered are outlined below.

- Infiltration Soaking water into the ground. This is the most desirable solution to runoff
 management as it restores the natural hydrological process. Based on site investigation
 infiltration testing carried out by Priority Geotechnical Ltd., infiltration rates in this area are
 suitable for infiltration of a 100 year, 6 hour duration storm event within the site. Infiltration to
 ground will also be accommodated to the rear of the proposed dwellings using a soakaway
 systems design to meet the requirements of BRE 365.
- Conveyance the transfer of surface water runoff from one place to another. Controlled conveyance can provide links between various SuDS components. Conveyance is implemented within this development through the use of landscaped swales. The swales will be placed where appropriate to drain roads next to public open spaces. The swale will be broad and shallow and covered in suitable vegetation to slow water, facilitating sedimentation, filtration through root zones and soil matrix, evapotranspiration and infiltrating into the underlying soil. Excess flows will be conveyed into the stormwater system in periods of high rainfall.
- Pervious pavements Pervious pavements provide a pavement suitable for pedestrian and/or vehicular traffic, while allowing rainwater to infiltrate through the surface and into the underlying structural layers. The water is temporarily stored beneath the overlying surface before infiltrating to ground. Pervious pavements are an efficient means of managing surface water runoff close to its source – intercepting runoff, reducing the volume and frequency of runoff, and providing a treatment medium. Pervious Paving is to be provided for all car parking (i.e., Off street parking).
- Tree pits are to be provided adjacent to public footpath areas to act as a first level of treatment for surface water runoff. Each pit will have a surface depression where water will be temporarily stored before if flows down through the tree pit soil. This depression will be sized to hold the

excess water from a 1:1 year, critical duration event – for water quality treatment. Each tree pit will be constructed using a suitable tree soil.

3.4 Design Parameters

The following parameters were used for the basis of design in the Innovyze MicroDrainage Module.

Table 3-1 Design Parameters Road Runoff Surface Network

Parameters	Values	Reference
Return Period	30 Year	Wallingford Procedure
M5-60	16.4	Wallingford Procedure
Ratio 'R'	0.215	Wallingford Procedure
Max Rainfall	Paved Areas 50mm/hr Roof Areas 75mm/hr	Wallingford Procedure
Global Time Entry	5 minutes	Wallingford Procedure
Minimum Velocity	0.75m/s	Site Development Works for Housing Areas
Run-Off Co-efficient	Roof Areas 1.0 Paved Areas 0.75	BS EN 16941-1
Pipe Roughness	0.6mm Concrete / 0.15mm uPVC	Colebrook/White
Pipe Cover	1.2m minimum without concrete encasement in trafficked areas 0.6m minimum with concrete encasement in trafficked areas	⁹ Technical Guidance Document H – Drainage and Waste Water Disposal
Climate Change	20%	Transport Infrastructure Ireland Drainage Systems for National Roads - DN-DNG-03022

3.4.1 Proposed Storm Water Services

Storm water generated from new hard landscaping and roofs on site will be directed to an onsite infiltration tank. Prior to entering the infiltration tank, the proposed surface water collection networks will outfall to a hydrocarbon interceptor and silt trap manhole. Terraced housing and apartment buildings will incorporate appropriately sized soakaways to rear gardens to capture storm water runoff. The soakaways are to be designed to BRE365 specifications and will infiltrate to ground.

Surface water from trafficked areas will be intercepted by a suitable petrol interceptor prior to entering the Infiltration system. In some instances, surface water from trafficked areas will enter tree pits / landscaped swales.

The proposed storm water sewer system is shown on Drawings **SHB3-BLN-CS-RPS-DR- DA002.** For detailed outputs from the surface water network design, including network details and 100-year storm event simulation results)including 20% for climate change), refer to **Appendix B.**

3.5 Pipe and Manhole Numbering

The manhole numbers define the structure of the network. The surface manholes are labelled such that labels in the direction of flow are typically in increasing order. S01, S02, etc. is used for surface water sewers. Diverted manholes will be labelled DS01. Existing manholes will be labelled ES01. The manholes are labelled such that labels in the direction of flow are typically in increasing order. (refer to drawing **SHB3-BLN-CS-RPS-DR- DA002 in Appendix A**).

3.6 Hydrocarbon / Oil Interceptor

A hydrocarbon interceptor will be provided prior to the attenuation/infiltration areas. In accordance with the requirements of BS EN 858, 4.1 (b) '(run-off) from impervious areas, e.g., car parks, roads, factory yards areas;' the size of the separator will depend on the design, rainfall intensity and the catchment area draining to the separator.

A Class1 Bypass hydrocarbon Interceptor is proposed prior to entering the infiltration area. It is recommended to use a Kingspan Klargester or equivalent approved surrounded in 300 mm mass concrete. The location of the interceptor is outlined in drawing SHB3-BLN-CS-RPS-DR- DA002, in Appendix A.

The maximum rainwater flow rate Q_r in l/sec shall be calculated using the equation below in accordance with EN 752-4:

$$Q_r = \Psi.i.A$$

Where,

- i is the rainfall intensity, in litres /sec / hectare.
- A is the area receiving rainfall, measured horizontally, in ha;
- Ψ is a dimensionless coefficient (usually taken as one)

Pollution prevention guidelines (PPG 3) use rainfall intensity equal to 6.5mm/hr which corresponds to the following formula for a bypass separator:

Where,

- NSB: Nominal Size of Bypass separator
- A: Catchment Area in m²

The impermeable areas draining to the proposed bypass separators is approximately $3570m^2$ and $4960m^2$ which includes all impermeable surfaces on the site.

NSB required:

- 0.0018 x 3570 = 6.426 l/s NSBE015 is suitable
- 0.0018 x 4960 = 8.928 l/s NSBE015 is suitable

Details of the sizing of the proposed interceptor for NSBE015 is provided in **Appendix D**. The maximum storm water flow that the bypass facility can cater for is 150 l/s. The maximum design flows in the storm

system is 145.5 I/s for a 1 in 100yr storm event so the bypass facility has sufficient capacity to cater for this flow.

3.7 Infiltration Design

RPS carried out further investigation to assess the possibility for localised infiltration within the site. RPS assessed the groundwater vulnerability of the area complying with TII publication (Road Drainage and the Water Environment – DN-DNG-03065) This document outlines the groundwater protection response matrix for use of permeable drains in road schemes, used in this instance to assess the appropriateness of infiltration within the site.

The Groundwater protection Response Matrix requires the identification of groundwater vulnerability and groundwater resources. GSI data indicates that the area is underlain by a Generally unproductive bedrock aquifer (Figure 3.1 - Bedrock which is Generally unproductive except for Local Zones (PI)) overlain by well-drained soil with a High subsoil permeability (Figure 3.2 & 3.3). Mapping also shows a high groundwater vulnerability (Figure 3.4).

Figure 3-1 Aquifer Classification – Bedrock Aquifer

Figure 3-3 Subsoil Permeability

SHB3-BLN-CS-RPS-RP-001 Drainage and Watermain Planning Design Report | P03 | 12th November 2021

From the vulnerability rating and aquifer classifications table below (Groundwater Protection Response Matrix) of the TII document shows a resource protection rating of R2(1) for the site. This rating stipulates that certain conditions must be met to allow infiltration to be incorporated into the design. These are shown in extracts below.

Table 3-2 Extract from TII Publication – DN-DNG-03065

	Source	Resource protection area (aquifer category)							
Vulnerability rating	protection	Regionally Important Aquifer			Locally Important Aquifer			Poor aquifer	
	area	Rk*	Rf	Rg	Lg	Lm	u	Pl	Pu
Extreme: Rock near Surface or karst (X)	R4	R4	R4	R3(2)	R3(2)	R3(1)	R3(1)	R3(1)	R3(1)
Extreme (E)	R4	R2 (3)	R2 (2)	R3(2)	R3(2)	R2 (2)	R2 (2)	R2 (1)	R2 (1)
High (H)	R3(2)	R2 (2)	R2 (2)	R2(2)	R2(2)	R2 (2)	R2 (2)	R2 (1)	R2 (1)
Moderate (M)	R3(1)	R2 (1)	R2 (1)			R2 (1)	R2 (1)	R1	R1
Low (L)	R3(1)	R1	R1			R1	R1	R1	R1

* A small proportion of the country (~0.6%) is underlain by locally important karstic aquifers (Lk); in these areas, the groundwater protection responses for the Rk groundwater protection zone shall apply.

A rating of R2(1) requires the design to meet the minimum standard of R2(1). As the subsoil is classified as a gravelly SAND and is underlain by greywacke and shale, Table R2(1) of the TII document requires that a minimum of 1m unsaturated subsoil is required beneath the invert level of the drainage system.

R1	Acceptable subject to minimum design standards in the NRA DMRB and Notes 1 and 2.			
R2				
R2(1)	Acceptable subject to minimum design standards in the NRA DMRB and to meeting the following requirements :			
	 There is a consistent minimum thickness of 1 m unsaturated subsoil, or 2 m in areas of karstified rock (Rk & Lk), beneath the invert level of the drainage system (Note 1). 			
	 During all stages of design particular attention must be paid to the presence of karst features and additional assessments undertaken if required. If karst features are identified response R2 (3) must be applied as a minimum. 			
	 During all stages of design particular attention must be paid to receptors (such as; public wells, group schemes, industrial water supply sources and springs) and additional assessments undertaken if required. 			

Figure 3-5 - Extract from TII Document DN-DNG-03065

It is the conclusion of the investigation that infiltration to ground is suitable in this location if the minimum requirements as set out above are met.

Furthermore, a site investigation was carried out across the development area in to confirm the conceptual design assumption that there were gravelly sand beneath the area that would be suitable for infiltration. The investigation included infiltration tests that followed the guidance in BRE 365. The tests

were carried out in locations identified as potential infiltration areas within the proposed site. The tests were carried out at a depth similar to the anticipated design layout of the proposed infiltration area. The infiltration rate determined on site at the Infiltration locations was sufficient to allow for a Infiltration design.

Site investigation infiltration testing results show an infiltration rates between 0.0346 m/hr and 0.45m/hr. An infiltration rate of 0.099 m/hr was determined for the lower catchment and an infiltration rate of 0.157 m/hr was determined for the upper catchment.

A factor of safety was then applied to the infiltration rate to account for possible long-term reductions in performance. Table 25.2 (Section 25.6) of CIRIA SuDS manual indicates that a factor of safety (FOS) of 5 is appropriate for a drained area of over >1000 m2 "minor damage to external areas or inconvenience if the capacity of the infiltration area is exceeded". The design infiltration coefficient is factored within the Microdrainage programme to allow for the appropriate factor of safety. Noting that no ground water encountered during the site investigations.

The infiltration systems are designed to cater for the 1 in 100-year return period storms with an additional allowance of 20% for climate change, this in accordance with the GDSDS. Using a proprietary infiltration system, with a nominal void ratio of 95%. The typical layout is shown in Drawing **SHB3-BLN-CS-RPS-DR-DA002 in Appendix A** with a typical crate system shown in **Appendix G**. Due to a level differential on site, two infiltration areas are required. These are split between the upper section of the site and the lower section of the site. A plan area of $370m^2$ will be required for the upper catchment ($36.0m \times 14.4m \times 0.8m$ deep) providing a storage capacity of $280m^3$. A plan area of $250m^2$ will be required for the lower section ($50m \times 5m \times 1.2m$ deep.) providing a storage capacity of $237m^3$.

There will be sufficient storage capacity available in the infiltration systems to store water from the critical 100-year storm (plus 20% for climate change) for their respective catchments prior to infiltration to ground. The maintenance of the infiltration system should be carried out as per the manufacturer's recommendations. Infiltration design calculations can be found in **Appendix C**.

4 WATER SUPPLY / IW PRE CONNECTION ENQUIRY

Wicklow County Council completed a Pre-connection enquiry form to establish the feasibility of a water/waste water connection. WCC submitted the application to Irish Water in 2019. WCC received feedback from Irish Water on the 22nd October 2019 via a standard confirmation of feasibility, attached in **Appendix E.**

IW database shows a 150mm Ø uPVC watermain on the Burgage More Road. NCW topographical survey has captured the location of the watermain. It is proposed to tie into this watermain to provide a watermain feed to the proposed buildings. A sluice valve and water meter will be provided prior to connection to the new building as indicated in drawings in **Appendix A**. The water main layout and details including valves, hydrants, metering etc. will be in accordance with Irish Water's Code of Practice and Standard Details for water infrastructure

A looped watermain will service the site with hydrants used to provide hydrant fire cover. This new watermain will be 150mm diameter PE100 HDPE pipe. Individual houses will have their own connections to the looped watermain via service connections and boundary boxes. Individual service boundary boxes will be of the type to suit Irish Water and to facilitate domestic meter installation. Hydrants are provided for firefighting at locations to ensure that each dwelling is within the required Building Regulations distance of a hydrant.

An underground storage tank for firefighting requirements is proposed for the site. This storage tank will be connected to the watermain and will incorporate an automated level control system. The access requirements for fire fighters will be fully agreed with the Local Area Fire Officer prior to construction. The required supply for firefighting purposes comes from the Water UK document "National guidance document on the provision of water for firefighting" which calls for 35 l/s or a site with an area of between one and two hectares.

A hydrant survey was competed in August 2021 by SES Water Management which established a flow rate of 880 l/min. the flow rate is the average maximum sustainable flow based on the 5-minute flow test. A flow rate of 880 l/min equates to a rate of approx.15 l/s. An additional firefighting flow rate of 20 l/s is required to meet the requirements of the above regulations. See **Appendix F** for hydrant testing results.

The maximum tank volume will be **72m³** (20 l/s for a period of 1 hour) this caters fully for the requirements of the above regulations. The proposed water main layout and water storage tank location is shown on drawing No. **SHB3-BLN-CS-RPS-DR-DA001 in Appendix A.**

5 FLOODING

The subject site is a relatively flat green field site of c 3.235 ha which is located to the west of Poulaphouca Reservoir Special Protection Area (SPA). Following RPS initial review of floodinfo.ie fluvial mapping (CFRAM study), the 0.1% Annual Exceedance Probability (AEP) event (1000 year event) shows a maximum water level of 183.60mOD in the Poulaphouca Reservoir.

The subject site is approximately 300m to the west and 500m to the north of the Poulaphouca Reservoir. The lowest FFL of the proposed development is 199.125mOD, approx. 15.5m above the 0.1%AEP event.

While flooding events have been recorded in the Poulaphouca Reservoir, no information indicates that the proposed site is subject to a significant flooding risk. The site is located outside the fluvial areas as modelled under the CFRAM programme/ detailed information on the extent of flooding in the Wicklow region is available at <u>www.floodinfo.ie</u>.

Extract from CFRAM mapping shown in Appendix H.

Appendix A

Drainage Layout, Detailed Drawings

- SHB3-BLN-CS-RPS-DR-DA001 Watermain Layout
- SHB3-BLN-CS-RPS-DR-DA002 Storm and Foul Water Networks

rpsgroup.com

SIT EXIS uPV EXI uP' PR (ST PF 25m PF 80m PF (ST PR PF (ST PR PF AN PR

LEGEND

E BOUNDARY	
ISTING 150mm VC WATER MAIN	
ISTING 80MM VC WATERMAIN	
OPOSED 150mm WATERMAIN ⁻ D-W-13)	· ·
OPOSED SERVICE CONNECTION nm HDPE (STD-W-03)	· ·
OPOSED SERVICE CONNECTION mm HDPE (STD-W-03)	· ·
OPOSED SLUICE VALVE D-W-07)	X sv
OPOSED HYDRANT D-W-18 / STD-W-19)	Η
OPOSED AIR VALVE D-W-22 / STD-W-23)	♦ AV
OPOSED SCOUR VALVE D-W-30)	€ _{ScV}
OPOSED BULK FLOW METER D ASSOCIATED TELEMETRY STEM (STD-W-26 / STD-W-26A)	Μ
OPOSED BOUNDARY BOX D-W-03)	

PROPOSED THRUST BLOCK

General Notes:) Hard copies, dwf and pdf will form a controlled issue of the drawing. All other formats (dwg etc.) are deemed to be an uncontrolled issue and any work carried out based on these files is at the recipients own risk. RPS will not accept any responsibility for any errors from the use of these files, either by human error by the recipient, listing of the un-dimensioned measurements, compatibility with the recipients software, and any errors arising when these files are used to aid the recipients drawing production, or setting out on site. ii) DO NOT SCALE, use figured dimensions only.

(iii) This drawing is the property of RPS, it is a project confidential classified document. It must not be copied used or its contents divulged without prior written consent. The needs and expectations of client and RPS must be considered when working with this drawing.

(iv) Information including topographical survey, geotechnical investigation and utility detail used in the design have been provided by others. v) All Levels refer to Ordnance Survey Datum, Malin Head.

Foul Sewer Notes:

- All foul sewer works shall be carried out in accordance with Irish Water Standard Details and Code of Practice for Wastewater Infrastructure Document CDS-5030-03.
- All pipe materials shall comply with Section 3.13 of the Irish Water Code of Practice for Wastewater Infrastructure Document CDS-5030-03.
- Foul sewer service connections and inspection chambers to each dwelling shall be in accordance with Irish Water standard detail STD-WW-02.
- All manhole chambers shall be in accordance with Irish Water standard detail STD-WW-10. Trench backfill and bedding shall be in accordance with Irish Water
- standard detail STD-WW-07. Concrete bed, haunch and surround shall be in accordance with
- Irish Water standard detail STD-WW-08. Separation distances from other services, boundary walls etc. shall be in accordance with Irish Water standard detail STD-WW-05. Separation distances from trees, shrubs etc. shall be in accordance

with Irish Water standard detail STD-WW-06 & 06A.

Storm Sewer Notes:

 \square

- All pipe materials shall comply with Section 3.13 of the Irish Water Code of Practice for Wastewater Infrastructure Document CDS-5030-03.
- All manhole chambers shall be in accordance with Irish Water standard detail STD-WW-10. Trench backfill and bedding shall be in accordance with Irish Water
- standard detail STD-WW-07. Concrete bed, haunch and surround shall be in accordance with
- Irish Water standard detail STD-WW-08.

Watermain Notes:

- All watermain works shall be carried out in accordance with Irish Water Standard Details and Code of Practice for Water Infrastructure Document CDS-5020-03.
- All pipe materials shall be in compliance with Section 3.9 of Irish Water Code of Practice Document-CDS-5020-03.
- Individual water service connections and boundary boxes to each dwelling shall be in compliance with Irish Water standard detail STD-W-02.
- Separation distances from other services, boundary walls etc. shall be in accordance with Irish Water standard detail STD-W-11. Separation distances from trees, shrubs etc. shall be in accordance
- with Irish Water standard detail STD-W-12 & 12A. On line and off-line air valve details shall be in accordance with Irish Water standard detail STD-W-22 & STD-W-23 respectively.
- Sluice valve details shall be in accordance with Irish Water standard detail STD-W-15.
- On line and off-line hydrant details shall be in accordance with Irish Water standard detail STD-W-18 & STD-W-19 respectively.
- Scour valve and chamber details shall be in accordance with Irish Water standard detail STD-W-30.

P04	12.11.21	OS B	ISSUE FOR PLANNING	04
P03	13.08.21	DNA NGB	ISSUE FOR REVIEW	04
P02	23.07.21	DNA	ISSUE FOR INFORMATION	04
P01	16.04.21	DNA CB	ISSUE FOR INFORMATION	04
Rev	Date	Drn Ch¥	Amendment / Issue	Арр
Client	·			

1:500 @ A1 1:1000@A3 Status S4 Rev P04

K DETAILS - I	LOWER CATC	HMENT				STORM WAT	ER NETWORI	K DETAILS - L	JPPER CATC	HMENT					FOUL WATER		ETAILS			G
Pipes In Invert Level (m)	Pipe Out Invert Level (m)	Pipe Out Diameter (mm)	Pipes In Backdrop (mm)	Manhole Name	Cover Level (m)	MH Depth (m)	Pipe Out PN	Pipes In Invert Level (m)	Pipe Out Invert Level (m)	Pipe Out Diameter (mm)	Pipes In Backdrop (mm)	Manhole Name	Cover Level (m)	MH Depth (m)	Pipe Out PN	Pipes In Invert Level (m)	Pipe Out Invert Level (m)	Pipe Out Diameter (mm)	Pipes In Backdrop (mm)	
	198.450	225		S01	201.290	1.425	1.000		199.865	300		F01	200.590	0.825	F1.000		199.765	225		
198.281	198.206	300		S02	201.620	1.840	1.001	199.780	199.780	300		F02	199.930	0.825	F1.001	199.105	199.105	225		
198.037	198.037	300		S03	202.400	2.681	1.002	199.719	199.719	300		F0 9	199.110	0.483	F2.000		198.627	225		
197.818	197.818	300		S04	202.500	2.842	1.003	199.658	199.658	300		F0 3	199.600	1.211	F1.002	198.775	198.389	225	386	
	198.225	225		S05	202.570	2.951	1.004	199.619	199.619	300						198.389				(ii
198.075	198.075	225		S06	201.385	2.514	1.005	199.471	<mark>198.871</mark>	300	600	F04	199.425	1.362	F1.003	198.063	198.063	225		(ii
197.599	197.599	300		S07	200.945	2.194	1.006	198.751	198.751	300		F10	200.185	0.825	F3.000		199.360	225		
197.925			251	S08	200.080	1.392	1.007	198.688	198.688	300		F11	200.065	0.950	F3.001	199.115	199.115	225		
197.530	197.530	300		S10	199.710	1.425	2.000		198.285	300		F12	199.110	0.560	F4.000		198.550	225		(iv
	198.275	225		S11	199.710	1.564	2.001	198.146	198.146	300		F1 3	199.170	0.890	F4.001	198.280	198.280	225		
198.157	198.082	300		S12	199.710	1.584	2.002	198.126	198.126	300		F0 5	199.645	1.627	F1.004	198.018	198.018	225		
197.964	197.964	300		S13	199.705	1.671	2.003	198.034	198.034	300						198.820			802	
197.892	197.892	300		S17	199.975	1.425	3.000		198.550	300						198.018				F
197.382	197.382	300		S18	200.065	1.696	3.001	198.369	198.369	300		F11	199.410	1.500	F5.000		197.910	225		1.
197.774			392	S14	199.705	1.763	2.004	197.942	197.942	300		F11	199.110	1.500	F5.001	197.610	197.610	225		
197.368	197.193	375	100mm Accounts					198.255			313	F12	199.635	2.264	F5.002	197.371	197.371	225		2
107 176	407.476	275	for PI	S15	199.645	1.730	2.005	197.915	197.915	300		F06	199.775	2.445	F1.005	197.630	197.330	225	300	[]
197.176	197.176	3/5		S16	199.645	1.794	2.006	197.851	197.851	300						197.330				
195,965	OUTFALL		1200mm accounts	509	199.645	1.933	1.008	198.652	197./12	375	865	F07	201.020	3.997	F1.006	197.023	197.023	225		3.
			for Infiltration Tank	T 8411	400.045	4.045	1 000	197.787	407 700	075		F16	200.830	0.825	F6.000		200.005	225		
				IMH	199.645	1.945	1.009	197.700	197.700	3/5	100mm Accounts	F17	201.385	1.495	F6.001	199.890	199.890	225		1
				PI	199.645	2.073	1.010	197.672	197.572	375	for Pl	F18	202.570	2.830	F6.002	199.740	199.740	225		4.
				INF	199.645	2.130	1.011	197.515	197.515	375		F08	202.570	5.892	F1.007	196.678	196.678	225		5.
					199.645	2.930		196.715	OUTFALL		800mm accounts for Infiltration Tank					199.590			2912mm Backdrop into Existing System	6.
												EF01	202.570	5.921		196.649	OUTFALL			4.
																	J			

General Notes:

Hard copies, dwf and pdf will form a controlled issue of the drawing. All other formats (dwg etc.) are deemed to be an uncontrolled issue and any work carried out based on these files is at the recipients own risk. RPS will not accept any responsibility for any errors from the use of these files, either by human error by the recipient, listing of the un-dimensioned measurements, compatibility with the recipients software, and any errors arising when these files are used to aid the recipients drawing production, or setting out on site.

ii) DO NOT SCALE, use figured dimensions only. (iii) This drawing is the property of RPS, it is a project confidential classified document. It must not be copied used or its contents divulged without prior written consent. The needs and expectations of client and RPS must be considered when working with this drawing.

(iv) Information including topographical survey, geotechnical investigation and utility detail used in the design have been provided by others. (v) All Levels refer to Ordnance Survey Datum, Malin Head.

Foul Sewer Notes:

- All foul sewer works shall be carried out in accordance with Irish Water Standard Details and Code of Practice for Wastewater Infrastructure Document CDS-5030-03.
- All pipe materials shall comply with Section 3.13 of the Irish Water Code of Practice for Wastewater Infrastructure Document CDS-5030-03.
- Foul sewer service connections and inspection chambers to each dwelling shall be in accordance with Irish Water standard detail STD-WW-02.
- All manhole chambers shall be in accordance with Irish Water standard detail STD-WW-10. Trench backfill and bedding shall be in accordance with Irish Water
- standard detail STD-WW-07. Concrete bed, haunch and surround shall be in accordance with
- Irish Water standard detail STD-WW-08. Separation distances from other services, boundary walls etc. shall be in accordance with Irish Water standard detail STD-WW-05. Separation distances from trees, shrubs etc. shall be in accordance
- with Irish Water standard detail STD-WW-06 & 06A.

Storm Sewer Notes:

- All pipe materials shall comply with Section 3.13 of the Irish Water Code of Practice for Wastewater Infrastructure Document CDS-5030-03.
- All manhole chambers shall be in accordance with Irish Water standard detail STD-WW-10. Trench backfill and bedding shall be in accordance with Irish Water
- standard detail STD-WW-07. Concrete bed, haunch and surround shall be in accordance with
- Irish Water standard detail STD-WW-08.

Watermain Notes:

- All watermain works shall be carried out in accordance with Irish Water Standard Details and Code of Practice for Water Infrastructure Document CDS-5020-03.
- All pipe materials shall be in compliance with Section 3.9 of Irish Water Code of Practice Document-CDS-5020-03.
- Individual water service connections and boundary boxes to each dwelling shall be in compliance with Irish Water standard detail STD-W-02.
- Separation distances from other services, boundary walls etc. shall be in accordance with Irish Water standard detail STD-W-11. Separation distances from trees, shrubs etc. shall be in accordance
- with Irish Water standard detail STD-W-12 & 12A. On line and off-line air valve details shall be in accordance with Irish
- Water standard detail STD-W-22 & STD-W-23 respectively. Sluice valve details shall be in accordance with Irish Water standard detail STD-W-15.
- On line and off-line hydrant details shall be in accordance with Irish Water standard detail STD-W-18 & STD-W-19 respectively.
- Scour valve and chamber details shall be in accordance with Irish Water standard detail STD-W-30.

P04	12.11.21	OS BNGB	ISSUE FOR PLANNING	04
P03	13.08.21	DMAGB	ISSUE FOR REVIEW	0×
P02	23.07.21	DNA	ISSUE FOR INFORMATION	0t
P01	16.04.21	DNA CB	ISSUE FOR INFORMATION	0t
Rev	Date	Drn	Amendment / Issue	Арр
Client				
		-		

File Identifier SHB3-BLN-CS-RPS-DR-DA002-01

1:1000@A3

Created on Sheets JULY 2021 Scale Status 1:500 @ A1 S4

01 OF 01 Rev P04

Appendix B

Design Calculations

- SHB3-BLN-CS-RPS-CA-0001 Foul Water Design Calcultions
- SHB3-BLN-CS-RPS-CA-0001 –Storm Water Design Calcultions Lower Catchment
- SHB3-BLN-CS-RPS-CA-0001 –Storm Water Design Calcultions Upper Catchment

Foul Water Design Calculations

rpsgroup.com

RPS (Galway)	F	age 1
Lyrr Building, IDA Business & Technology Park		
Mervue		
Galway, Ireland		Micro
Date 12/11/2021 11:22	Designed by PMGB	
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked by DK	Diamage
Innovyze	Network 2020.1	
	FOUL SEWERAGE DESIGN	
De	sign Criteria for Foul - Main	
Pipe	Sizes STANDARD Manhole Sizes STANDARD	
Industrial Flow (l/s/ha) 0.00 Industrial Peak Flow Factor 0.00 Do Flow Per Person (l/per/day) 150.00 Add Fl Persons per House 2.70 Mini	Domestic (l/s/ha) 0.00 Maximum Backdrop Height (m) 3.000 mestic Peak Flow Factor 6.00 Min Design Depth for Optimisation (m) 0.600 ow / Climate Change (%) 10 Min Vel for Auto Design only (m/s) 0.75 mum Backdrop Height (m) 0.100 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits	
Netwo	ork Design Table for Foul – Main	
PN Length Fall Slope (m) (m) (1:X)	Area Houses Base k HYD DIA Section Type Auto (ha) Flow (l/s) (mm) SECT (mm) Design	
F1.000 35.229 0.660 53.4 0	0.000 0 0.6 1.500 o 225 Pipe/Conduit 🛱	
F1.001 8.313 0.330 25.2 0	0.000 0 0.0 1.500 o 225 Pipe/Conduit 🔐	
F2.000 54.983 0.238 231.0 0	0.000 0 0.6 1.500 o 225 Pipe/Conduit 🔐	
F1.002 75.414 0.326 231.0 0 F1.003 10.379 0.045 231.0 0	0.000 0 0.0 1.500 o 225 Pipe/Conduit 🔐 0.000 0 0.0 1.500 o 225 Pipe/Conduit 🔐	
	Network Results Table	
PN US/IL Σ Area	Σ Base Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow	
(m) (na) r	10W (1/S) (1/S) (mm) (m/S) (m/S) (1/S) (1/S)	
F1.000 199.765 0.000	0.6 0 0.1 17 0.50 1.57 62.5 0.7	
F1.001 199.105 0.000	0.6 0 0.1 14 0.65 2.29 91.1 0.7	
F2.000 198.627 0.000	0.6 0 0.1 23 0.30 0.75 30.0 0.7	
F1.002 198.389 0.000	1.2 0 0.1 32 0.37 0.75 30.0 1.3	
F1.003 198.063 0.000	1.2 0 0.1 32 0.37 0.75 30.0 1.3	
	©1982-2020 Innovyze	

RPS (Galway)														Page 2
Lyrr Building, IDA Business & Tech	nology	Park												
Mervue														
Galway, Ireland														Micro
Date 12/11/2021 11:22					Design	ed by	PMGE							
File SHB3-BLN-CS-RPS-CA-0001.MDX					Checke	d by	DK							Diamaye
Innovvze					Networ	k 202	0.1							
- 1 -														
			Netw	work I	Design	Table	e for	Foul	- M	ain				
			a 1			_					- ·	·· _	. .	
PN	Lengtn	Fall	(1·x)	Area (ba)	Houses	Ba Flow	se (1/e)	K (mm)	SECT	DIA (mm)	Sect	tion Type	e Auto	
	(11)	(111)	(1.7)	(114)		FIOW	(1/5)	(SECI	(11111)			Design	
F3 000	56 516	0 245	230 7	0 000	0		06	1 500	0	225	Pipe	e/Conduit	- <u>-</u>	
F3.001	60.966	0.295	206.4	0.000	0		0.0	1.500	0	225	Pipe	e/Conduit	t 🛱	
F4.000	62.477	0.270	231.4	0.000	0		0.6	1.500	0	225	Pipe	e/Conduit	t 🗗	
F4.001	60.633	0.262	231.0	0.000	0		0.0	1.500	0	220	Pibe	e/Condui	C 😈	
F1.004	77.797	0.387	200.8	0.000	0		0.0	1.500	0	225	Pipe	e/Conduit	t 💣	
==					0		0.0			0.05		100 1 1		
F5.000 F5.001	55.467	0.300	184.9	0.000	0		0.6	1.500	0	225	Pipe Dine	e/Conduit	t 🗗	
F5.002	7.480	0.040	184.9	0.000	0		0.0	1.500	0	225	Pipe	e/Conduit	t 💾	
											-		~	
F1.005	56.820	0.307	184.9	0.000	0		0.0	1.500	0	225	Pipe	e/Conduit	t 😷	
				N	etwork	Resu	lts I	able						
					_				_	_			-	
	PN U	S/IL (m)	Σ Area	Σ Ba	ase Σ	Hse A	dd Flo	w P.De	ep P.) (m	Vel	Vel	Cap F	'low 1/s)	
		(111)	(114)	FIOW	(1/3)		(1/3)	(11411) (11	, 5) (111/3/	(1/3) (1/3/	
ت 2	000 19	9 360	0 000		0 6	0	0	1 0) S ()	3.0	0 75	30 0	0 7	
F3 F3	.001 19	9.115	0.000		0.6	0	0.	1 2	23 0	.31	0.80	31.7	0.7	
F4	.000 19	8.550	0.000		0.6	0	0.	1 2	23 0	.30	0.75	29.9	0.7	
E 4	.001 19	8.280	0.000		0.6	0	0.	1 2	23 0	.30	0.75	30.0	0.7	
F1	.004 19	8.018	0.000		2.4	0	0.	2 4	14 0	.49	0.81	32.1	2.6	
F5	.000 19	7.910	0.000		0.6	0	0.	1 2	22 0	.33	0.84	33.5	0.7	
۲) ۲۲	.001 19 002 10	7 371	0.000		0.6	0	0.	⊥ ∠ 1 ≎	-2 U 22 N	. 3 3 3 3	0.84	33.5 33.5	0.7	
E J	.002 13	,,	0.000		0.0	0	0.	± 2	. 0	• • • •	5.01	55.5	5.1	
F1	.005 19	7.330	0.000		3.0	0	0.	3 4	18 0	.54	0.84	33.5	3.3	
				1	©1982-	2020	Innov	vze						

RPS (Galway)																Page 3
Lyrr Building, IDA Business	& Techr	nology	v Park													
Mervue																
Galway, Ireland																Micro
Date 12/11/2021 11:22						Design	ned b	y PMGE	5							
File SHB3-BLN-CS-RPS-CA-0001.	MDX					Checke	ed by	DK								Digitige
Innovyze						Networ	:k 20	20.1								1
									_							
				Net	work	Design	Tabl	le for	Foul	- 1	Main					
	PN	Length	Fall	Slope	Area	Houses	в	ase	k	HYD		A Se	ction Tv	me	Auto	
		(m)	(m)	(1:X)	(ha)		Flow	7 (1/s)	(mm)	SEC	r (mm	.)		г- І	Design	
	D1 000	CD C70	0 0 0 4 4	104 0	0 000			0 0	1 500		- 00	E Di				
	F1.006	63.670	0.344	184.9	0.000	0		0.0	1.500	C	5 22	5 P1	pe/Condu	llτ	Ű	
	F6.000	26.647	0.115	231.7	0.000	0		0.6	1.500	c	o 22	5 Pi	pe/Condu	it	ď	
	F6.001	34.652	2 0.150	231.0	0.000	0 0		0.0	1.500	C	o 22	5 Pi	pe/Condu	it	đ	
	F6.002	34.652	2 0.150	231.0	0.000	0 0		0.0	1.500	C	o 22	5 Pi	pe/Condu	it	đ	
	F1.007	6.739	0.029	231.0	0.000	0		0.0	1.500	C	o 22	5 Pi	pe/Condu	iit	ሆ	
					1	Jetwork	Res	ults 1	able							
					_											
	1	PN U	JS/IL	Σ Area	ΣΒ	ase Σ	Hse	Add Flo	w P.De	p P	.Vel	Vel	Cap	Flo	w	
			(m)	(ha)	Flow	(1/s)		(1/s)	(mm) (r	n/s)	(m/s)) (1/s)	(1/s	5)	
	F1	.006 19	97.023	0.000		3.0	0	0.	3 4	18 (0.54	0.8	4 33.5	3.	.3	
	EC	000 00		0 000		0 (0	0	1 0		0 20	0 7	F 20 0	0	7	
	F6	001 10	0.005 00.005	0.000		0.6	0	0.	1 2	3 (3 ().30) 30	0.7	5 29 . 9	0.	• / 7	
	F6	.002 19	99.740	0.000		0.6	0	0.	1 2	23 (0.30	0.7	5 30.0	0.	.7	
	F1	.007 19	96.678	0.000		3.6	0	0.	4 5	55 (0.52	0.7	5 30.0	4.	.0	

& Techno .MDX MH MH L (m) Dep (m	logy Park MH Connection	Manhole MH Diam.,L*W	esigned hecked detwork Schedu	d by PMGB by DK 2020.1 les for F Pipe Out	oul - Ma	.in				– Micro Drainage
.MDX MH MH L (m) Dep (m	.h Connection	Manhole MH Diam.,L*W	esigne Checked letwork Schedu	d by PMGB by DK 2020.1 les for F Pipe Out	oul - Ma	uin_				– Micro Drainage
.MDX MH MH L (m) Dep (m	MH Connection	Manhole MH Diam.,L*W	esigned hecked etwork Schedu	d by PMGB by DK 2020.1 les for F Pipe Out	oul - Ma	<u>iin</u>				– Micro Drainage
.MDX MH MH L (m) Dep (m	The Connection	Manhole MH Diam.,L*W	esigned Checked etwork Schedu	d by PMGB by DK 2020.1 les for F Pipe Out	oul – Ma	uin_				Drainage
. MDX MH MH L (m) Dep (m	MH Connection	Manhole MH Diam.,L*W	Schedu	by DK 2020.1 Les for F Pipe Out	oul - Ma	iin				
MH MH L (m) Dep (m	MH Connection	Manhole MH Diam.,L*W	Schedu	2020.1 les for F	oul – Ma	iin				
MH MH L (m) Dep (m	MH Connection	Manhole MH Diam.,L*W	Schedu	les for F	oul – Ma	<u>iin</u>				
MH MH L (m) Dep (m	MH Connection	Manhole MH Diam.,L*W	Schedu	les for F	<u>oul – Ma</u>	<u>iin</u>				
MH MH L (m) Dep (m	MH Connection	MH Diam.,L*W		Pipe Out						
MH MH L (m) Dep (m	MH Connection	MH Diam.,L*W		Pipe Out				1		
L (m) Dep (m	In Connection	Diam.,L*W			.		Pipes In			
((mm)	PN	Invert Level (m)	Diameter (mm)	PN	Invert Level (m)	Diameter (mm)	Backdrop (mm)	
		()		20001 ()	()		20102 ()	()	()	
	E Open Merhelle	1000	E1 000	100 705	225					
	5 Open Manhole	1200	F1.000	100 105	225	E1 000	100 105	225		
	Coron Manhole	1200	FT.001	100 607	225	r1.000	123.102	225		
0 600 1 2	1 Open Manhole	1200	F2.000	100 200	225	E1 001	100 775	225	206	
9.000 1.2		1200	F1.002	190.309	223	F1.001	100 200	225	200	
0 125 1 2	2 Open Marhele	1200	E1 002	100 062	225	F2.000	100.000	225		
185 0 8	25 Open Manhole	1200	F3 000	199.005	225	F1.002	190.005	220		
	0 Open Manhole	1200	F3 001	199 115	225	F3 000	199 115	225		
9.110 0.5	50 Open Manhole	1200	F4.000	198.550	225	13.000	199.119	220		
9.170 0.8	0 Open Manhole	1200	F4.001	198.280	225	F4.000	198.280	225		
9.645 1.6	27 Open Manhole	1200	F1.004	198.018	225	F1.003	198.018	225		
						F3.001	198.820	225	802	
						F4.001	198.018	225		
9.410 1.5	0 Open Manhole	1200	F5.000	197.910	225					
9.110 1.5	0 Open Manhole	1200	F5.001	197.610	225	F5.000	197.610	225		
9.635 2.2	54 Open Manhole	1200	F5.002	197.371	225	F5.001	197.371	225		
9.775 2.4	15 Open Manhole	1200	F1.005	197.330	225	F1.004	197.630	225	300	
						F5.002	197.330	225		
01.020 3.9	7 Open Manhole	1200	F1.006	197.023	225	F1.005	197.023	225		
0.830 0.8	25 Open Manhole	1200	F6.000	200.005	225					
01.385 1.4	5 Open Manhole	1200	F6.001	199.890	225	F6.000	199.890	225		
2.570 2.8	0 Open Manhole	1200	F6.002	199.740	225	F6.001	199.740	225		
02.570 5.8	2 Open Manhole	1200	F1.007	196.678	225	F1.006	196.678	225		
						F6.002	199.590	225	2912	
02.570 5.9	21 Open Manhole	375		OUTFALL		F1.007	196.649	225		
) () () () () () () () () () (0.590 0.82 0.930 0.82 0.110 0.48 0.600 1.21 0.425 1.36 0.425 1.36 0.425 0.82 0.185 0.82 0.185 0.82 0.185 0.82 0.105 0.95 0.110 0.56 0.410 1.50 0.645 1.62 0.635 2.26 0.775 2.44 0.020 3.99 0.830 0.82 0.830 0.82 2.570 2.83 2.570 5.89	0.590 0.825 Open Manhole 0.930 0.825 Open Manhole 0.110 0.483 Open Manhole 0.600 1.211 Open Manhole 0.425 1.362 Open Manhole 0.425 1.362 Open Manhole 0.425 1.362 Open Manhole 0.425 0.825 Open Manhole 0.425 0.950 Open Manhole 0.655 0.950 Open Manhole 0.10 0.560 Open Manhole 0.110 0.560 Open Manhole 0.645 1.627 Open Manhole 0.645 1.627 Open Manhole 0.645 1.500 Open Manhole 0.645 1.500 Open Manhole 0.635 2.264 Open Manhole 0.635 2.445 Open Manhole 0.830 0.825 Open Manhole 0.830 0.825 Open Manhole 0.830 0.825 Open Manhole 2.570 5.892<	0.590 0.825 Open Manhole 1200 0.930 0.825 Open Manhole 1200 0.110 0.483 Open Manhole 1200 0.600 1.211 Open Manhole 1200 0.425 1.362 Open Manhole 1200 0.425 1.362 Open Manhole 1200 0.425 0.825 Open Manhole 1200 0.425 1.362 Open Manhole 1200 0.425 0.825 Open Manhole 1200 0.655 0.950 Open Manhole 1200 0.655 0.950 Open Manhole 1200 0.645 1.627 Open Manhole 1200 0.645 1.627 Open Manhole 1200 0.645 1.627 Open Manhole 1200 0.635 2.264 Open Manhole 1200 0.635 2.445 Open Manhole 1200 0.830 0.825 Open Manhole 1200 0.830 0.825 Open Manhole 1200 2.570 5.892 Open Manhol	0.590 0.825 Open Manhole 1200 F1.000 0.930 0.825 Open Manhole 1200 F1.001 0.110 0.483 Open Manhole 1200 F1.002 0.600 1.211 Open Manhole 1200 F1.003 0.425 1.362 Open Manhole 1200 F1.003 0.425 0.825 Open Manhole 1200 F3.000 0.185 0.825 Open Manhole 1200 F3.000 0.665 0.950 Open Manhole 1200 F3.001 0.110 0.560 Open Manhole 1200 F4.001 0.645 1.627 Open Manhole 1200 F5.000 0.110 1.500 Open Manhole 1200 F5.001 0.635 2.264 Open Manhole 1200 F5.002 0.775 2.445 Open Manhole 1200 F1.006 0.830 0.825 Open Manhole 1200 F6.002 0.830 0.825 Open Manhole 1200 F6.002 0.5770 2.830 Open Ma	0.5990 0.825 Open Manhole 1200 F1.000 199.765 0.930 0.825 Open Manhole 1200 F1.001 199.105 0.110 0.483 Open Manhole 1200 F1.002 198.627 0.600 1.211 Open Manhole 1200 F1.002 198.389 0.425 1.362 Open Manhole 1200 F1.003 198.063 0.425 0.825 Open Manhole 1200 F3.000 199.360 0.065 0.950 Open Manhole 1200 F3.001 199.360 0.110 0.560 Open Manhole 1200 F4.000 198.550 0.110 0.560 Open Manhole 1200 F4.001 198.280 0.645 1.627 Open Manhole 1200 F5.001 197.910 1.401 1.500 Open Manhole 1200 F5.002 197.371 1.405 Open Manhole 1200 F1.006 197.023 0.825 Open Manhole 1200 F6.001 199.890 0.830 0.825 Open Manhole	0.590 0.825 Open Manhole 1200 F1.000 199.765 225 0.930 0.825 Open Manhole 1200 F1.001 199.105 225 0.110 0.483 Open Manhole 1200 F1.002 198.389 225 0.600 1.211 Open Manhole 1200 F1.002 198.389 225 0.425 0.362 Open Manhole 1200 F1.003 198.063 225 0.425 0.825 Open Manhole 1200 F3.000 199.360 225 0.655 0.950 Open Manhole 1200 F3.001 199.115 225 0.465 0.560 Open Manhole 1200 F4.001 198.280 225 0.645 1.627 Open Manhole 1200 F5.001 197.910 225 0.645 1.500 Open Manhole 1200 F5.001 197.910 225 0.645 1.500 Open Manhole 1200 F5.001 197.312 225 0.645 0.264 Open Manhole 1200 F1.005	0.590 0.825 Open Manhole 1200 F1.000 199.765 225 0.825 Open Manhole 1200 F1.001 199.105 225 F1.000 0.425 Open Manhole 1200 F1.001 199.105 225 F1.000 0.425 1.362 Open Manhole 1200 F1.002 198.389 225 F1.001 0.445 0.425 Open Manhole 1200 F1.003 198.063 225 F1.002 0.445 0.825 Open Manhole 1200 F3.000 199.360 225 F3.000 0.455 0.825 Open Manhole 1200 F3.001 199.115 225 F3.000 0.410 0.560 Open Manhole 1200 F4.001 198.280 225 F4.000 0.645 1.627 Open Manhole 1200 F5.001 197.910 225 F3.001 0.645 1.627 Open Manhole 1200 F5.001 197.910 225 F5.001 0.645 1.627 Open Manhole 1200 F5.002 197.330	0.590 0.825 Open Manhole 1200 F1.000 199.765 225 0.930 0.825 Open Manhole 1200 F1.001 199.105 225 F1.000 199.105 0.110 0.483 Open Manhole 1200 F1.001 199.105 225 F1.001 198.775 0.600 1.211 Open Manhole 1200 F1.002 198.389 225 F1.001 198.775 0.425 0.362 Open Manhole 1200 F1.003 198.063 225 F1.002 198.389 0.425 0.960 Open Manhole 1200 F3.000 199.360 225 F1.002 198.063 0.165 0.950 Open Manhole 1200 F4.000 198.550 225 0.100 0.560 Open Manhole 1200 F4.001 198.280 225 F4.000 198.280 0.645 1.627 Open Manhole 1200 F5.001 197.910 225 F1.001 198.820 0.645 1.627 Open Manhole 1200 F5.001 197.310 225	0.590 0.825 Open Manhole 1200 F1.000 199.765 225 0.825 Open Manhole 1200 F1.001 199.105 225 F1.000 199.105 225 0.483 Open Manhole 1200 F2.000 198.627 225 F1.001 198.775 225 0.483 Open Manhole 1200 F1.002 198.389 225 F1.001 198.775 225 0.485 Open Manhole 1200 F1.002 198.063 225 F1.002 198.063 225 0.485 Open Manhole 1200 F3.001 199.115 225 F3.000 199.115 225 0.465 0.950 Open Manhole 1200 F4.001 198.280 225 F4.001 198.280 225 0.410 0.560 Open Manhole 1200 F1.004 198.018 225 F3.001 198.280 225 0.410 1.500 Open Manhole 1200 F5.001 197.610 225 </td <td>0.590 0.825 Open Manhole 1200 F1.000 199.765 225 0.930 0.825 Open Manhole 1200 F1.001 199.105 225 F1.001 199.105 225 0.600 1.211 Open Manhole 1200 F1.002 198.389 225 F1.001 198.775 225 386 0.425 1.362 Open Manhole 1200 F1.002 198.389 225 F1.001 198.775 225 386 0.425 1.362 Open Manhole 1200 F1.002 198.063 225 F1.002 198.389 225 0.110 0.560 Open Manhole 1200 F3.000 199.360 225 F3.000 199.115 225 0.110 0.560 Open Manhole 1200 F4.001 198.280 225 F4.001 198.280 225 0.110 1.500 Open Manhole 1200 F5.001 197.910 225 F3.001 197.610 225 802 0.410 1.500 Open Manhole 1200 F5.002 197.371</td>	0.590 0.825 Open Manhole 1200 F1.000 199.765 225 0.930 0.825 Open Manhole 1200 F1.001 199.105 225 F1.001 199.105 225 0.600 1.211 Open Manhole 1200 F1.002 198.389 225 F1.001 198.775 225 386 0.425 1.362 Open Manhole 1200 F1.002 198.389 225 F1.001 198.775 225 386 0.425 1.362 Open Manhole 1200 F1.002 198.063 225 F1.002 198.389 225 0.110 0.560 Open Manhole 1200 F3.000 199.360 225 F3.000 199.115 225 0.110 0.560 Open Manhole 1200 F4.001 198.280 225 F4.001 198.280 225 0.110 1.500 Open Manhole 1200 F5.001 197.910 225 F3.001 197.610 225 802 0.410 1.500 Open Manhole 1200 F5.002 197.371

RPS (Galway)									Page 5
Lyrr Building, IDA Business & Techr	nology	Park							
Mervue									
Galway, Ireland									Micco
Date 12/11/2021 11:22				Des	signed by PM	IGB			Drainago
File SHB3-BLN-CS-RPS-CA-0001.MDX				Che	ecked by DK				Diamage
Innovyze				Net	work 2020.1				
		1	Manhole	e Sc	chedules for	Foul – Mai	. <u>n</u>		
	MH Name	Manhole Easting (m)	Manho] Northi (m)	le .ng	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)	
	F01	697783.408	713205.	885	697783.408	713205.885	Required		
	F02	697773.081	713172.	204	697773.081	713172.204	Required		
	F09	697751.890	713112.	910	697751.890	713112.910	Required	1	
	F03	697768.342	713165.	373	697768.342	713165.373	Required	\checkmark	
	F04	697696.458	713188.	176	697696.458	713188.176	Required		
	F10	697760.092	713224.	394	697760.092	713224.394	Required	~	
	F11	697706.483	713242.	284	697706.483	713242.284	Required	P	
	F12	697728.847	713108.	399	697728.847	713108.399	Required		
	F13	697669.080	713126.	600	697669.080	713126.600	Required	6	
	F05	697686.710	713184.	613	697686.710	713184.613	Required	+	
				©19	982-2020 Inn	ovyze			

RPS (Galway)									Page 6
Lyrr Building, IDA Business & Techno	ology	v Park							
Mervue									
Galway, Ireland									Micco
Date 12/11/2021 11:22				Des	signed by PM	IGB			
File SHB3-BLN-CS-RPS-CA-0001.MDX				Che	ecked by DK				Dialitacje
Innovyze				Net	twork 2020.1				
		1	¶anhol€	e So	chedules for	Foul - Mai	. <u>n</u>		
	MH Name	Manhole Easting (m)	Manho Northi (m)	le Ing	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)	
	F11	697646.365	713142.	984	697646.365	713142.984	Required	~	
	F11	697593.804	713160.	.704	697593.804	713160.704	Required	4	
	F12	697607.029	713202.	945	697607.029	713202.945	Required	1	
	F06	697612.520	713208.	.026	697612.520	713208.026	Required	1	
	F07	697628.703	713262.	492	697628.703	713262.492	Required	5	
	F16	697528.727	713195.	945	697528.727	713195.945	Required		
	F17	697541.746	713219.	.196	697541.746	713219.196	Required	6	
	F18	697555.110	713251.	.167	697555.110	713251.167	Required	1	
	F08	697568.474	713283.	.138	697568.474	713283.138	Required		
	F	697565.965	713289.	.393			No Entry		
				©10	982-2020 Inn	ovvze		`	

RPS (Galway)		Page 7
Lyrr Building, IDA Business & Technology Park		
Mervue		
Galway, Ireland		Micco
Date 12/11/2021 11:22	Designed by PMGB	
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked by DK	Diamage
Innovyze	Network 2020.1	
Free Flowin	g Outfall Details for Foul - Main	
Outfall Out	fall C. Level I. Level Min D,L W	
Pipe Number Na	ume (m) (m) I. Level (mm) (mm) (m)	
F1.007	F 202.570 196.649 0.000 375 0	
	©1982-2020 Innovyze	

Storm Water Design Calculations Lower Catchment

rpsgroup.com

RPS (Galway)	Page 1
Lyrr Building, IDA Business & Technology Park	
Mervue	
Galway, Ireland	Micro
Date 12/11/2021 10:58	Designed by PMGB
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked by DK
Innovyze	Network 2020.1
STORM SEWER DES	SIGN by the Modified Rational Method
Design Cri	iteria for Storm 1 - Lower Site
Pipe Size	es STANDARD Manhole Sizes STANDARD
FSR Raint Return Period (years) 100 M5-60 (mm) 16.400 Ratio R 0.215 Maximum Rainfall (mm/hr) 50 Add F1 Maximum Time of Concentration (mins) 30 Mini	nfall Model - Scotland and Ireland Foul Sewage (l/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 Volumetric Runoff Coeff. 1.000 Min Design Depth for Optimisation (m) 1.200 PIMP (%) 100 Min Vel for Auto Design only (m/s) 0.75 Clow / Climate Change (%) 20 Min Slope for Optimisation (1:X) 500 Dimum Backdrop Height (m) 0.100
De	Designed with Level Soffits
Time Area D	Diagram for Storm 1 - Lower Site
Time (mins)	AreaTimeArea(ha)(mins)(ha)0.2084-80.1488-120.001
Iotal	Area contributing (na) = 0.357
Tota	al Pipe Volume (m³) = 21.589
Network Desig PN Length Fall Slope I.Area (m) (m) (1:X) (ha)	gn Table for Storm 1 - Lower Site T.E. Base k HYD DIA Section Type Auto (mins) Flow (1/s) (mm) SECT (mm) Design
<u>1</u>	Network Results Table
PN Rain T.C. US/IL Σ (mm/hr) (mins) (m)	I.Area E Base Foul Add Flow Vel Cap Flow (ha) Flow (l/s) (l/s) (l/s) (l/s) (l/s)

RPS (Galway)															Page 2
Lyrr Building, IDA Busines	ss & Tech	nology	Park	۲.											
Mervue															
Galway, Ireland															Micco
Date 12/11/2021 10:58						Design	ed by	PMGE	3						
File SHB3-BLN-CS-RPS-CA-00	01.MDX					Checke	d by	DK							Digiliga
Innovyze						Networ	k 202	0.1							
			Ne	etworl	k Desig	n Tabl	e for	Stor	rm 1 -	Lowe	er S	ite			
	PN	Length	Fall	Slope	e I.Area	T.E.	Ba	se	k	HYD	DIA	Sectio	on Type	Auto	
		(m)	(m)	(1:X)) (ha)	(mins)	FLOW	(1/s)	(mm)	SECT	(mm)			Design	
	1.000	33.687	0.169	199.3	3 0.028	5.00		0.0	0.600	0	225	Pipe/0	Conduit	ď	
	1.001	33.687	0.169	199.3	3 0.026	0.00		0.0	0.600	0	300	Pipe/(Conduit	۳	
	1.002	43.700	0.219	199.5	5 0.036	0.00		0.0	0.600	0	300	Pipe/(Conduit	С Ф	
	1.003	43./00	0.219	TAA';	0.043	0.00		0.0	0.000	0	300	rtbe/(Jonduit	Ψ	
	2.000	30.030	0.150	200.2	2 0.035	5.00		0.0	0.600	0	225	Pipe/0	Conduit	æ	
	2.001	30.030	0.150	200.2	2 0.033	0.00		0.0	0.600	0	225	Pipe/0	Conduit	Ū	
	1 004	10 740	0 000	100 1	0 007	0 00		0 0	0 600		200	Dine		۵	
	1.004	29.621	0.148	200.1	0.027	0.00		0.0	0.600	0	300	Pipe/(Conduit	U A	
	1.000		0.210	20013	2 0.000	0.00		0.0		0	000	1 - 10 0 / 1	00114410	•	
	3.000	23.567	0.118	199.7	7 0.039	5.00		0.0	0.600	0	225	Pipe/0	Conduit	ď	
	3.001	23.567	0.118	199.	7 0.034	0.00		0.0	0.600	0	300	Pipe/0	Conduit	ď	
	3.002	14.363	0.072	199.5	5 0.037	0.00		0.0	0.600	0	300	Pipe/(Conduit	Ű	
					N	letwork	Resu	lts I	able						
	-	D. i		<u> </u>				D					6	71	
	PN	(mm/h	n r 1r) (m	.c. ins)	(m)	(ha)	Flow	l/s)	(1/s)	Add (1/	riow /s)	(m/s)	(1/s)	(1/s)	
	1 00	0 50	0.0	5 61	199 450	0 029	2	0 0	0.0		1 0	0 92	36 7	6 1	
	1.00	1 50.	.00	6.11 [°]	198.206	0.024	4	0.0	0.0		2.0	1.11	78.5	11.8	
	1.00	2 50.	.00	6.77	198.037	0.091	1	0.0	0.0		3.3	1.11	78.4	19.6	
	1.00	3 50.	.00	7.43	197.818	0.134	1	0.0	0.0		4.8	1.11	78.4	28.9	
	2 00	0 50	0.0	5 51 -	198 225	0 0.21	5	0 0	0 0		1 २	0 00	36 6	7 5	
	2.00	1 50.	.00	6.09 [°]	198.075	0.06	7	0.0	0.0		2.4	0.92	36.6	14.6	
		2.5													
	1.00	4 50.	.00	7.63	197.599	0.228	3	0.0	0.0		8.2	1.11	78.5	49.5	
			00	8 0 8 1	197.530	0.236	5	0.0	0.0		8.5	1.11	78.3	51.2	
	1.00	5 50.	.00	0.00											
	1.00	0 50.	.00	5.43	198.275	0.039	Э	0.0	0.0		1.4	0.92	36.6	8.5	
	1.00 3.00 3.00	5 50. 0 50. 1 50.	.00	5.43 1 5.78 1	198.275 198.082	0.039	9 3	0.0	0.0		1.4 2.6	0.92 1.11	36.6 78.4	8.5 15.8	

Lyrr Building, IDA Business & Technology Park	RPS (Galway)															Page 3	
Mervue Salway, Ireland Designed by PMGB Checked by DK Designed by PMGB Checked by DK Display Innovyze Network 2020.1 Network 2020.1 Network Design Table for Storm 1 - Lower Site Network Design Table for Storm 1 - Lower Site PN Length Fall Slope I.Area T.E. Base k HTD DIA Section Type Auto Design 3.003 23.535 0.118 199.4 0.005 0.00 0.0 0.600 0 300 Pipe/Conduit Image: Conduit 1000 1.006 2.740 0.011 250.0 0.000 0.00 0	Lyrr Building, IDA Business & Te	chnol	ogy 1	Park													
Salway, Ireland Designed by PMGB Date 12/11/2021 10:58 Designed by PMGB File SHB3-BLN-CS-RPS-CA-0001.MDX Network 2020.1 Network Design Table for Storm 1 - Lower Site Network 2020.1 Network Design Table for Storm 1 - Lower Site Network 2020.1 Network 2020.1 Network 2020.1 Noton 23.003 23.535 0.118 199.4 0.005 0.00 0.00 0.00 0.00 0.00 300 Pipe/Conduit 1 1.006 2.740 0.014 195.7 0.006 0.00 0.00 0.00 0.00 0.00 0.600 0.0375 Pipe/Conduit 1 Network Results Table Network Results Table Noton 0.00 0.0112.9 (1/s) (1/s) (1/	lervue																
Date 12/11/2021 10:58 Designed by PMGB Checked by DK File SHB3-BLN-CS-RPS-CA-0001.MDX Network 2020.1 Network Design Table for Storm 1 - Lower Site PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 3.003 23.535 0.118 199.4 0.005 0.00 0.0 0.00 0.00 0.00 Pipe/Conduit 1.006 2.740 0.014 195.7 0.006 0.00 0.0 0.00 0.00 0.00 Pipe/Conduit 1.007 4.173 0.017 245.5 0.000 0.00 0.0 0.00 0.00 0.00 0.00	Galway, Ireland															Mic	(U
File SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK Innovyze Network 2020.1 Detwork Design Table for Storm 1 - Lower Site PN Length Fall Slope I.Area (m) T.E. Base (mins) k HYD DIA Section Type Auto Design 3.003 23.535 0.118 199.4 0.005 0.00 0.0 0.600 o 300 Pipe/Conduit (m) (m) 1.006 2.740 0.014 195.7 0.006 0.00 0.0 0.600 o 300 Pipe/Conduit (m) (m) Network Results Table Not 0.35 197.892 0.115 0.0 0.0 4.1 1.11 78.4 24.9 1.006 50.00 8.12 197.382 0.357 0.0 0.0 12.9 1.12 79.2 77.3 Not 0.05 0.05 0.05 0.0 0.11 1.11 78.4 24.9 1.006 50.00 8.12 197.382<	Date 12/11/2021 10:58						Design	ed by PM	ÍGB								
Innovyze Network 2020.1 Network Design Table for Storm 1 - Lower Site PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) Auto (m) 3.003 23.535 0.118 199.4 0.005 0.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduct C	File SHB3-BLN-CS-RPS-CA-0001.MDX						Checke	d by DK								Didi	nage
Network Design Table for Storm 1 – Lower Site PN Length Fail Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 3.003 23.535 0.118 199.4 0.005 0.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduit Conduit 1.006 2.740 0.014 195.7 0.000 0.00 0.00 0.00 0.00 Pipe/Conduit Image: Conduit 1.006 2.740 0.011 250.0 0.000 0.00 0.00 0.00 0.00 2.00 2.000 2.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00	Innovyze						Networ	k 2020.1	-							I.	
Network Design Hare for oton 1 for				No	twork	Desid	nn Tabl	e for St	orm	. 1 _	Lowe	or G	ito				
PN Length Fail Slope L. Area T. E. Base k HYD DIA Section Type Auto Design 3.003 23.535 0.118 199.4 0.005 0.00 0.00 0.600 0 300 Pipe/Conduit Image: Conduit Image: Con				110	CWOIN	Desig	JII IADI	e ioi bi	.011	ι⊥	TOME	ST D	ILE				
(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 3.003 23.535 0.118 199.4 0.005 0.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduit Conduit Image: Conduit Conduit Conduit Image: Conduit Co	PN	Leng	gth F	all	Slope	I.Area	T.E.	Base		k	HYD	DIA	Sectio	on Type	Auto		
3.003 23.535 0.118 199.4 0.005 0.00 0.0 0.00 0 300 Pipe/Conduit Image: conduct con		(m	ı)	(m)	(1:X)	(ha)	(mins)	Flow (1/s	5)	(mm)	SECT	(mm)			Design		
1.006 2.740 0.014 195.7 0.006 0.00 0.0 0.0 0.00 0.0 0.00 0.0 0.	3.0	03 23.5	535 0	.118	199.4	0.005	0.00	0.	.0 0	.600	0	300	Pipe/0	Conduit	ď		
1.006 2.740 0.014 195.7 0.005 0.00	1 0		740 0	014	105 7	0 006	0 00	0	0 0	600	â	200	Dina /(^r ondui +	_@		
1.008 2.716 0.011 250.0 0.000 0.00 0.0 0.000 0 375 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (m/s) (1/s) (1/s) 3.003 50.00 6.35 197.892 0.115 0.0 0.0 4.1 1.11 78.4 24.9 1.006 50.00 8.12 197.382 0.357 0.0 0.0 12.9 1.12 79.2 77.3 1.007 50.00 8.18 197.193 0.357 0.0 0.0 12.9 1.15 127.2 77.3	1.0	10 2.	173 0	.017	245.5	0.000	0.00	0.	.00	.600	0	375	Pipe/(Conduit			
Network Results Table PN Rain (mm/hr) T.C. US/IL (mm/hr) E I.Area (mm) E Base (mm/l/s) Foul (l/s) Vel (l/s) Cap (l/s) Flow (l/s) 3.003 50.00 6.35 197.892 0.115 0.0 0.0 4.1 1.11 78.4 24.9 1.006 50.00 8.12 197.382 0.357 0.0 0.0 1.2.9 1.12 79.2 77.3 1.007 50.00 8.18 197.193 0.357 0.0 0.0 12.9 1.15 127.2 77.3	1.0	08 2.	716 0	.011	250.0	0.000	0.00	0.	.0 0	.600	0	375	Pipe/(Conduit			
PN Rain (mm/hr) T.C. (mins) US/IL (m) E I.Area (ha) E Base Flow (l/s) Foul Add Flow (l/s) Vel (l/s) Cap (l/s) Flow (l/s) 3.003 50.00 6.35 197.892 0.115 0.0 0.0 4.1 1.11 78.4 24.9 1.006 50.00 8.12 197.382 0.357 0.0 0.0 12.9 1.12 79.2 77.3 1.007 50.00 8.18 197.193 0.357 0.0 0.0 12.9 1.15 127.2 77.3						1	Jetwork	Results	s Ta	uble							
PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) 3.003 50.00 6.35 197.892 0.115 0.0 0.0 4.1 1.11 78.4 24.9 1.006 50.00 8.12 197.382 0.357 0.0 0.0 12.9 1.12 79.2 77.3 1.007 50.00 8.18 197.193 0.357 0.0 0.0 12.9 1.15 127.2 77.3										_		_	_		_		
3.00350.006.35197.8920.1150.00.04.11.1178.424.91.00650.008.12197.3820.3570.00.012.91.1279.277.31.00750.008.18197.1930.3570.00.012.91.15127.277.3		PN (1	Rain mm/hr)	т. (mi	.C. ins)	(m)	Σ I.Area (ha)	a ΣBase Flow (1/	∋ ∕s)	Foul (l/s)	Add 1 (1/	Flow (s)	Vel (m/s)	Cap (1/s)	Flow (l/s)		
1.00650.008.12197.3820.3570.00.012.91.1279.277.31.00750.008.18197.1930.3570.00.012.91.15127.277.3	3	.003	50.00	06	6.35 1	97.892	0.115	5 (0.0	0.0		4.1	1.11	78.4	24.9		
1.007 50.00 8.18 <mark>197.193</mark> 0.357 0.0 0.0 12.9 1.15 127.2 77.3	1	.006	50.00	0 8	3.12 1	97.382	0.35	7 (0.0	0.0		12.9	1.12	79.2	77.3		
	1	.007	50.00	0 8	3.18 <mark>1</mark>	97.193	0.357	7 (0.0	0.0		12.9	1.15	127.2	77.3		
1.008 50.00 8.22 197.176 0.357 0.0 0.0 12.9 1.14 126.1 77.3	1	.008	50.00	0 8	8.22 1	97.176	0.357	7 (0.0	0.0		12.9	1.14	126.1	77.3		

RPS (Galway)										Page 4		
Lyrr Building, IDA Business & Technology Park												
Mervue												
Galway, Ireland									Mirco			
Date 12/11/2021 10:58	Design	ned by	7 PMGB									
File SHB3-BLN-CS-RPS-CA-0001.MI	Checke	ed by	DK						Drainage			
Innovyze	Netwo	ck 202	•									
<u>Manhole Schedules for Storm 1 - Lower Site</u>												
NTT.	MIT	MIT	MIT			Dine Out			Dines In		1	
Name	CL (m)	Depth	Connection	Diam.,L*W	PN	Invert	Diameter	PN	Invert	Diameter	Backdrop	
		(m)		(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)	
S01	199.650	1.200	Open Manhole	1200	1.000	198.450	225					
S02	198.900	0.694	Open Manhole	1200	1.001	198.206	300	1.000	198.281	225		
S03	198.900	0.863	Open Manhole	1200	1.002	198.037	300	1.001	198.037	300		
S04	199.170	1.352	Open Manhole	1200	1.003	197.818	300	1.002	197.818	300		
S08	199.425	1.200	Open Manhole	1200	2.000	198.225	225					
S09	199.170	1.095	Open Manhole	1200	2.001	198.075	225	2.000	198.075	225		
S05	199.170	1.571	Open Manhole	1200	1.004	197.599	300	1.003	197.599	300		
								2.001	197.925	225	251	
S06	199.300	1.770	Open Manhole	1200	1.005	197.530	300	1.004	197.530	300		
S10	199.775	1.500	Open Manhole	1200	3.000	198.275	225					
S11	199.000	0.918	Open Manhole	1200	3.001	198.082	300	3.000	198.157	225		
S12	199.000	1.036	Open Manhole	1200	3.002	197.964	300	3.001	197.964	300		
S13	198.900	1.008	Open Manhole	1200	3.003	197.892	300	3.002	197.892	300		
S07	199.100	1.718	Open Manhole	1200	1.006	197.382	300	1.005	197.382	300		
								3.003	197.774	300	392	
ST MH	199.100	1.907	Open Manhole	1350	1.007	197.193	375	1.006	197.368	300	100	
P1	199.100	1.924	Open Manhole	1350	1.008	197.176	375	1.007	197.176	375		
Infiltration	199.100	1.935	Open Mannole	0		OUIFALL		1.008	197.165	375		
		MH	Manhole	Manhole	Inter	section In	ntersection	n Manh	ole Layou	t		
	1	Name	Easting	Northing	Eas	sting (m)	Northing	Acc	ess (Nort)	ר)		
			(m)	(m)		(m)	(m)					
		SC	01 697770.599	713164.841	697	770.599	713164.84	1 Requ	ired			
									•			
									1			
				©1982-	-2020	Innovvze						
erlos soso tunovàse												

RPS (Galway)								Page 5	
Lyrr Building, IDA Business & Techn	nology Pa	irk							
Mervue									
Galway, Ireland								Micco	
Date 12/11/2021 10:58	Desigr	ned by PMGB							
File SHB3-BLN-CS-RPS-CA-0001.MDX				ed by DK				Diamacje	
Innovyze	Networ	ck 2020.1				I			
	MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)		
	S02	697760.838	713132.599	697760.838	713132.599	Required	4		
	S03	697751.078	713100.356	697751.078	713100.356	Required	4		
	S04	697709.276	713113.094	697709.276	713113.094	Required			
	S08	697685.085	713183.250	697685.085	713183.250	Required	•		
	S09	697676.280	713154.541	697676.280	713154.541	Required			
	S05	697667.474	713125.831	697667.474	713125.831	Required			
	S06	697659.433	713136.985	697659.433	713136.985	Required	-		
	S10	697609.028	713203.115	697609.028	713203.115	Required			
	S11	697602.156	713180.572	697602.156	713180.572	Required	4		
	S12	697595.284	713158.029	697595.284	713158.029	Required			
	S13	697608.851	713153.316	697608.851	713153.316	Required			
©1982-2020 Innovyze									

RPS (Galway)							Page 6	
Lyrr Building, IDA Business & Technology Pa	rk							
Mervue								
Galway, Ireland							Micco	
Date 12/11/2021 10:58	Design	ed by PMGB						
File SHB3-BLN-CS-RPS-CA-0001.MDX		Checke	ed by DK				Diamage	
Innovyze		Networ	rk 2020.1					
MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)		
S07	697631.173	713145.858	697631.173	713145.858	Required			
ST MH	697630.371	713143.238	697630.371	713143.238	Required	1		
PI	697634.312	713141.865	697634.312	713141.865	Required	-9		
Infiltration	697633.331	713139.332			No Entry			
RPS (Galway)	Page	Page 7						
--	----------------	--------------------	------------	-----------	-----------	------------	--	----------
Lyrr Building, IDA Business & Technolo	gy Park							
Mervue								
Calway Ireland								
Dete 12/11/2021 10:50		Desirent	DMCT					MICIO
Date 12/11/2021 10:58		Designed by	PMGE	3				Drainage
File SHB3-BLN-CS-RPS-CA-0001.MDX		Checked by	DK					Brainage
Innovyze		Network 202	0.1					
	Area	Summary for Stor	rm 1	- Lower	Site			
Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total		
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)		
1.000			75	0 011	0 000	0.000		
1.000	Classification	pavement	15	0.011	0.009	0.009		
	Classification	Permeable Pavement	60	0.008	0.005	0.020		
1 001	Classification	Fitched Roof	90	0.010	0.015	0.028		
1.001	Classification	pavement	/5	0.019	0.014	0.014		
	Classification	Permeable Pavement	60	0.015	0.009	0.023		
1.000	Classification	Pitched Rooi	90	0.003	0.003	0.026		
1.002	Classification	pavement	/5	0.018	0.014	0.014		
	Classification	Permeable Pavement	60	0.013	0.008	0.021		
1.000	Classification	Pitched Roof	90	0.017	0.015	0.036		
1.003	Classification	pavement	/5	0.021	0.016	0.016		
	Classification	Permeable Pavement	60	0.016	0.010	0.026		
	Classification	Pitched Roof	90	0.019	0.017	0.043		
2.000	Classification	pavement	/5	0.012	0.009	0.009		
	Classification	Permeable Pavement	60	0.010	0.006	0.015		
	Classification	Permeable Pavement	60	0.009	0.005	0.020		
	Classification	Pitched Roof	90	0.007	0.006	0.026		
	Classification	Flat Root	90	0.010	0.009	0.035		
2.001	Classification	pavement	/5	0.018	0.013	0.013		
	Classification	Permeable Pavement	60	0.007	0.004	0.018		
	Classification	Permeable Pavement	60	0.008	0.005	0.023		
	Classification	Pitched Roof	90	0.008	0.007	0.030		
1.00	Classification	Pitched Roof	90	0.003	0.003	0.033		
1.004	Classification	pavement	/5	0.013	0.010	0.010		
	Classification	Permeable Pavement	60	0.014	0.009	0.018		
1.005	Classification	Flat Roor	90	0.010	0.009	0.027		
1.005	Classification	pavement	/5	0.007	0.005	0.005		
	Classification	Flat Roof	90	0.003	0.003	0.008		
3.000	Classification	pavement	/5	0.014	0.010	0.010		
	Classification	Permeable Pavement	60	0.013	0.008	0.018		
	Classification	Permeable Pavement	60	0.008	0.005	0.023		
	Classification	Pitched Roof	90	0.018	0.016	0.039		
3.001	Classification	pavement	75	0.014	0.011	0.011		
	Classification	Permeable Pavement	60	0.012	0.007	0.018		
	Classification	Permeable Pavement	60	0.009	0.005	0.023		
	Classification	Fitched Roof	90	0.012	0.011	0.034		
		@1982_2020	Tnnot					
		ST202-2020	T IIII 0 /	лдте				

RPS (Galway)							Page 8
Lyrr Building, IDA Business & Technolo	gy Park						
Mervue							
Galway, Ireland							Micco
Date 12/11/2021 10:58		Designed by	PMGE	}			
File SHB3-BLN-CS-RPS-CA-0001.MDX		Checked by	DK				Dialitaye
Innovyze		Network 202	0.1				
<u>ــــــــــــــــــــــــــــــــــــ</u>							
	Area Su	ummary for Sto	rm 1	- Lower	Site		
Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
3.002	Classification	Flat Roof	90	0.007	0.006	0.006	
	Classification	Pitched Roof	90	0.008	0.007	0.013	
	Classification	pavement	75	0.019	0.014	0.028	
	Classification Pe	rmeable Pavement	60	0.015	0.009	0.037	
3.003	Classification	pavement	75	0.007	0.005	0.005	
1.006	Classification	Pitched Roof	90	0.007	0.006	0.006	
1.007	-	-	100	0.000	0.000	0.000	
1.008	-	-	100	0.000	0.000	0.000	
				Total	Total	Total	
				0.478	0.357	0.357	
	Free Flowing Ou	utfall Details	for	Storm 1	- Lower S	Site	
	<u></u>					<u> </u>	
	Outfall Ou Pipe Number N	tfall C. Level	LI.L	evel Min n) T Le	n D,L	W (mm)	
			(-	, <u> </u>)	()	
	1 000 7.611	100 100	107	165 0	000 0	0	
	1.008 Infil	Itration 199.100) 197	.165 0.	000 0	U	
	Simulation	Criteria for	Stor	m 1 – Low	ver Site		
Volumetric Runoff Coeff	1.000 Manhole He	eadloss Coeff (Gl	lobal)	0.500		Inlet Coeffiecier	nt 0.800
Areal Reduction Factor	1.000 Foul Set	wage per hectare	(1/s)	0.000 Flc	w per Pers	son per Day (l/per/day	ý) 0.000
Hot Start (mins)	0 Additional H	Flow - % of Total	l Flow	0.000		Run Time (mins	s) 60
Hot Start Level (mm)	0 MADD Fac	ctor * 10m³/ha St	corage	2.000		Output Interval (mins	s) 1
Number of Inpu	it Hydrographs 0	Number of Offlir	ne Con	trols 0 Nu	umber of Ti	ime/Area Diagrams O	
Number of O	nline Controls 0 Nu	umber of Storage	Struc	tures 1 Nu	umber of Re	eal Time Controls 0	
	C	unthatia Dainf	-	Detaile			
	<u>5</u>	ynchecic Kalli	.a.ı.	Decalls			
	Rainfall Model FSH	R Region Scot	tland	and Irelan	id Rat	tio R 0.215	
Return	Period (years) 100	D M5-60 (mm)		16.40	0 Profile	Type Summer	
		01000 0000	-				
		©1982-2020	⊥nnov	vze			

RPS (Galway)		Page 9
Lyrr Building, IDA Business & Technology Park		
Mervue		
Galway, Ireland		Micco
Date 12/11/2021 10:58	Designed by PMGB	
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked by DK	Diamage
Innovyze	Network 2020.1	
	Synthetic Rainfall Details	

Cv (Summer) 1.000 Cv (Winter) 1.000 Storm Duration (mins) 30

RPS (Galway)		Page 10
Lyrr Building, IDA Business & Technology Park		
Mervue		
Galway, Ireland		Micro
Date 12/11/2021 10:58	Designed by PMGB	
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked by DK	Diamage
Innovyze	Network 2020.1	
Storage Str	uctures for Storm 1 - Lower Site	
Infiltration	Basin Manhole: PI, DS/PN: 1.008	
Invert Level (m) 190 Infiltration Coefficient Base (m/hr) 0.0	5.259 Infiltration Coefficient Side (m/hr) 0.09900 Porosity 0.95 09900 Safety Factor 5.0	
Depth (m) Area (m ²	²) Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 250.	.0 1.200 250.0 1.201 0.0	
	©1982-2020 Innovyze	

RPS (Galway)								Page	11
Lyrr Building, IDA Business & Technology Park									
Mervue									
Galway, Ireland									Micco
Date 12/11/2021 10:58	Designe	d by PMGB						-	
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked	bv DK							Dialinage
Innovvze	Network	2020.1							
Summary of Critical Result:	s by Maximu	ım Level (F	Rank 1)	for St		Lower Si	te		
4	<u> </u>	·	·						
Prost Deduction Dectors 1 000 - Markels U	Simulat	tion Criteria	1 F 0 0	MADD	D	10-3/1-0+			
Hot Start (mins) 0 Foul Se	wage per bec	I (GIODAI) U tare (1/s) O	.500	MADD	Factor ^	IUM3/na St Let Coeffie	cient 0 800)	
Hot Start Level (mm) 0 Additional	Flow - % of	Total Flow 0	.000 Flor	w per Pe	erson per	Day (l/per	/day) 0.000	,)	
Number of Input Hydrographs 0	Number of (Offline Contr	ols 0 Nu	mber of	Time/Are	a Diagrams	0		
Number of Unline Controls U I	Number of Sto	orage Structu	ires I Nu	imber of	Real Tim	e Controls	0		
	Synthetic	Rainfall Det	ails						
Rainfall Model	E	'SR M5-60 (mm	n) 16.500	Cv (Su	mmer) 1.0	00			
Region Scotla	and and Irela	ind Ratio	R 0.233	Cv (Wi	nter) 1.0	00			
Margin for Flood Risk	Warning (mm)	300 0 DTS S	tatus ON	JInert	ia Status	OFF			
Analy	sis Timestep	Fine DVD S	tatus OFF	7	La Status	011			
Profile(s)						Summer an	d Winter		
Duration(s) (mins) 15, 30,	60, 120, 180	, 240, 360,	480, 600,	720, 9	60, 1440,	2160, 288	0, 4320,		
					5760,	7200, 864	0, 10080		
Return Period(s) (years)						1,	30, 100		
Climate Change (%)						20	, 20, 20		
	Water	Surcharged	Flooded				Half Drain	Pipe	
US/MH First (Y) U	S/CL Level	Depth	Volume	Flow /	Maximum	Discharge	Time	Flow	
PN Name Event Flood	(m) (m)	(m)	(m³)	Cap.	Vol (m³)	Vol (m³)	(mins)	(1/s)	Status
1.000 S01 15 minute 100 year Summer I+20% 19	9.650 198.54	6 -0.129	0.000	0.37	0.103	5.745		12.9	OK
1.001 S02 30 minute 100 year Summer I+20% 19	8.900 198.33	8 -0.168	0.000	0.34	0.210	15.822		24.8	OK
1.002 S03 30 minute 100 year Summer I+20% 19	8.900 198.30	4 -0.033	0.000	0.51	1.683	26.367		37.1	OK
1.003 S04 30 minute 100 year Summer I+20% 19	9.170 198.26	2 0.144	0.000	0.61	3.346	38.834		44.7	SURCHARGED
2.000 S08 IS minute 100 year Summer I+20% I9	9.170 198.26	4 -0.036	0.000	0.47	0.110	19.618		30.3	OK
1.004 S05 30 minute 100 year Summer I+20% 19	9.170 198.18	6 0.287	0.000	1.17	4.578	66.406		75.9	SURCHARGED
1.005 S06 30 minute 100 year Summer I+20% 19	9.300 198.09	3 0.263	0.000	1.10	1.518	68.705		78.0	SURCHARGED
3.000 S10 15 minute 100 year Summer I+20% 19	9.775 198.39	4 -0.106	0.000	0.53	0.129	7.982		18.0	OK
3.001 SII 15 minute 100 year Summer I+20% 19	9.000 198.23	5 -0.147	0.000	0.49	0.280	14.854		34.2	OK
	©1982-2	020 Innovv	ze						

RPS (Galway)													Page 12		
Lyrr Build	ding,	IDA Busine	ss & Tec	hnology Pa	ark										
Mervue															
Galway, Ir	Galway, Ireland														Micco
Date 12/11/2021 10:58 Designed by PMGB															
File SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK													Diamaye		
Innovyze	nnovyze Network 2020.1														
	US/MH				First (Y)	US/CL	Water Level	Surcharged Depth	Flooded Volume	Flow /	Maximum	Discharge	Half Drain Time	Pipe Flow	
PN	US/MH Name		Event		First (Y) Flood	US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Maximum Vol (m ³)	Discharge Vol (m³)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
PN 3.002	US/MH Name S12	15 minute 1	Event 00 year S	Summer I+20%	First (Y) Flood	US/CL (m) 199.000	Water Level (m) 198.173	Surcharged Depth (m) -0.091	Flooded Volume (m ³) 0.000	Flow / Cap . 0.80	Maximum Vol (m³) 0.986	Discharge Vol (m ³) 22.371	Half Drain Time (mins)	Pipe Flow (1/s)	Status OK
PN 3.002 3.003	US/MH Name S12 S13	15 minute 1 15 minute 1	Event 00 year 5 00 year 5	Summer I+20% Summer I+20%	First (Y) Flood	US/CL (m) 199.000 198.900	Water Level (m) 198.173 198.095	Surcharged Depth (m) -0.091 -0.097	Flooded Volume (m ³) 0.000 0.000	Flow / Cap. 0.80 0.79	Maximum Vol (m³) 0.986 0.737	Discharge Vol (m³) 22.371 23.435	Half Drain Time (mins)	Pipe Flow (1/s) 52.3 54.8	Status OK OK
PN 3.002 3.003 1.006	US/MH Name \$12 \$13 \$07	15 minute 1 15 minute 1 30 minute 1	Event 00 year 2 00 year 2 00 year 2	Summer I+20% Summer I+20% Summer I+20%	First (Y) Flood	US/CL (m) 199.000 198.900 199.100	Water Level (m) 198.173 198.095 197.917	Surcharged Depth (m) -0.091 -0.097 0.235	Flooded Volume (m ³) 0.000 0.000 0.000	Flow / Cap. 0.80 0.79 2.47	Maximum Vol (m ³) 0.986 0.737 2.979	Discharge Vol (m ³) 22.371 23.435 103.837	Half Drain Time (mins)	Pipe Flow (1/s) 52.3 54.8 128.1	Status OK OK SURCHARGED
PN 3.002 3.003 1.006 1.007	US/MH Name S12 S13 S07 ST MH	15 minute 1 15 minute 1 30 minute 1 30 minute 1	Event 00 year \$ 00 year \$ 00 year \$ 00 year \$	Summer I+20% Summer I+20% Summer I+20% Summer I+20%	First (Y) Flood	US/CL (m) 199.000 198.900 199.100 199.100	Water Level (m) 198.173 198.095 197.917 197.639	Surcharged Depth (m) -0.091 -0.097 0.235 0.071	Flooded Volume (m ³) 0.000 0.000 0.000 0.000	Flow / Cap. 0.80 0.79 2.47 1.61	Maximum Vol (m ³) 0.986 0.737 2.979 0.716	Discharge Vol (m ³) 22.371 23.435 103.837 103.840	Half Drain Time (mins)	Pipe Flow (l/s) 52.3 54.8 128.1 128.0	Status OK OK SURCHARGED SURCHARGED

Storm Water Design Calculations Upper Catchment

RPS (Galway)						Page 1
Lyrr Building, IDA Business & Technology Park						
Mervue						
Galway, Ireland						Mirco
Date 12/11/2021 10:59	Desi	gned by				
File SHB3-BLN-CS-RPS-CA-0001.MDX	Chec	cked by	DK			Diamaye
Innovyze	Netw	vork 202	20.1			
STORM SEWER DES	IGN !	by the	Modif	ied R	atio	onal Method
Design Cri	teri	a for S	torm	2 – Uj	pper	<u>r site</u>
Pipe Size	s STA	NDARD Ma	nhole	Sizes	STAND	NDARD
FSR Rain: Return Period (years) 100 M5-60 (mm) 16.100 Ratio R 0.222 Maximum Rainfall (mm/hr) 50 Add F Maximum Time of Concentration (mins) 30 Min:	Call M Fc Yolume .ow / .mum F	Model – S bul Sewag etric Rur Climate Backdrop	Scotla ge (1/: noff Co PIM Chango Heigh	nd and s/ha) 0 peff. 0 ? (%) e (%) c (m) 0	Irela .000 .750 100 20 .100	land 0 Maximum Backdrop Height (m) 2.000 0 Min Design Depth for Optimisation (m) 0.900 0 Min Vel for Auto Design only (m/s) 0.75 0 Min Slope for Optimisation (1:X) 500 0
De	≥sign€	ed with I	Level	Soffits		
Time Area D	iagr	am for	Storn	12 -	Uppe	er site
Time (mins)	Area (ha)	Time (mins)	Area (ha)	Time (mins)	Are (ha	rea na)
	. 1.60	((0.00	
0-4).160	4-8	0.306	8-12	0.03	031
Total	Area	Contribu	ting (ha) = (.496	96
Tota	ıl Pip	pe Volume	e (m³)	= 41.6	10	
Network Design PN Length Fall Slope I.Area	jn Ta T.E.	able for Bas	r Sto e	rm 2 - k HY	Upp D D	pper site DIA Section Type Auto
		, (_, _,		(1	
<u>]</u>	letwc	ork Resi	ults	Table		
PN Rain T.C. US/IL Σ (mm/hr) (mins) (m)	I.Area (ha)	a ΣBa Flow (se 1/s)	Foul A (1/s)	dd Fl (l/s)	Flow Vel Cap Flow s) (m/s) (l/s) (l/s)

RPS (Galway)													Page 2
Lyrr Building, IDA Business & Technolog	y Par	k											
Mervue													
Galway, Ireland													Micco
Date 12/11/2021 10:59				Designe	ed by PM	1GB							
File SHB3-BLN-CS-RPS-CA-0001.MDX				Checked	l by DK								Drainage
Innovyze				Network	2020.1	L							
	N	etwor	k Desig	n Table	e for St	corm	2 -	Uppe	r si	ite			
	E -11	61 am	. T. D		Dece		1-					Durb a	
(m)	(m)	(1:X)) (ha)	T.E. (mins)	Base Flow (1/9	s) (n	к mm) :	SECT (mm)	Sectio	оп туре	Design	
,,	()	(=	, (,	((-/-	-, (-	,		,				
1.000 24.908	0.085	5 293.0	0.018	5.00	0	.0 0.	600	0	300	Pipe/C	Conduit	ð	
1.001 26.410	0.061	1 433.0	0.016	0.00	0	.0 0.	600	0	300	Pipe/C	Conduit	Ű	
1.002 26.410	0.06	1 433.0 9 127 0	J U.UI9	0.00	0	.0 0.	600	0	300	Pipe/(Conduit	U L	
1 004 63 912	0.03	9 427.0 8 431 8	S 0.025	0.00	0	0 0	600	0	300	Pipe/(onduit	U A	
1.005 26.948	0.120	0 224.0	5 0.010	0.00	0	.0 0.	600	0	300	Pipe/(Conduit	 ▲	
1.006 26.948	0.063	3 427.	7 0.031	0.00	0	.0 0.	600	0	300	Pipe/(Conduit		
1.007 15.585	0.036	6 432.9	9 0.028	0.00	0	.0 0.	600	0	300	Pipe/0	Conduit	ř	
												-	
2.000 40.970	0.139	9 294.	7 0.039	5.00	0	.0 0.	600	0	300	Pipe/C	Conduit	0	
2.001 8.450	0.020	0 422.	5 0.019	0.00	0	.0 0.	600	0	300	Pipe/C	Conduit	ď	
2.002 39.757	0.092	2 432.1	1 0.019	0.00	0	.0 0.	600	0	300	Pipe/C	Conduit	ď	
2.003 39.757	0.092	2 432.1	1 0.066	0.00	0	.0 0.	600	0	300	Pipe/C	Conduit	ď	
			N	etwork	Results	s Tab	ole						
PN Ba	in '	тс		E T Area	Σ Base	<u>م</u> ٦	Foul	Add F	ໄດ່ພ	Vel	Cap	Flow	
(mm/	'hr) (1	mins)	(m)	(ha)	Flow (1,	/s) ((1/s)	(1/s	5)	(m/s)	(1/s)	(1/s)	
1.000 50	.00	5.45	199.865	0.018	(0.0	0.0		0.5	0.91	64.6	3.0	
1.001 50	.00	6.04	199.780	0.034	(0.0	0.0		0.9	0.75	53.0	5.6	
1.002 50	.00	6.63	199.719	0.053	(0.0	0.0		1.4	0.75	53.0	8.6	
1.003 50	.00	7.00	199.658	0.078	(0.0	0.0		2.1	0.75	53.3	12.6	
1.004 50	.00	8.42	199.619	0.096	(0.0	0.0		2.6	0.75	53.0	15.5	
1.005 50	.00	8.85	198.871	0.142	(0.0	0.0		3.8	1.05	73.9	23.1	
1.006 50	.00	9.44	198.751	0.173	(0.0	0.0		4.7	0.75	53.3	28.1	
1.007 50	.00	9.79	198.688	0.201	(0.0	0.0		5.4	0.75	53.0	32.7	
2.000 50	.00	5.75	198.285	0.039	ſ	0.0	0.0		1.1	0.91	64.4	6.4	
2.001 50	.00	5.94	198.146	0.059	(0.0	0.0		1.6	0.76	53.6	9.5	
2.002 50	.00	6.82	198.126	0.078	(0.0	0.0		2.1	0.75	53.0	12.6	
2.003 50	.00	7.70	198.034	0.144	(0.0	0.0		3.9	0.75	53.0	23.4	

Tyrr Building, TDA Business & Technology Park Designed by PMGB Discrete Mervue Galway, Ireland Designed by PMGB Discrete	RPS (Galway)													Page 3
Mervore Galway, Ireland Designed by PMGR Checked by DK Designed by PMGR Checked by DK Designed by PMGR File SHB3-RIA-CS-RPS-CA-0001,MDX Checked by DK Checked by DK Designed by PMGR Designed by PMGR Designed by PK	Lyrr Building, IDA Business & Tec	hnology	/ Par	k										
Galaxy, Treland Designed by PMGB Checked by DK Microcycle Date 12/11/2021 10:59 Designed by PMGB Checked by DK Discover 2020.1 Innovyze Network 2020.1 Network 2020.1 Section Type Auto Innovyze Network 2020.1 Network 2020.1 Section Type Auto Innovyze Network 2020.1 Network 2020.1 Section Type Auto Innovyze Network 2020.1 Section Type Auto Design Innovyze Network 2020.1 Section Type Auto Design Innovyze Network 2020.1 Section Type Auto Design Innovyze Network 2020.0 0.0 0.0 Section Type Auto Innovyze Network 2020.0 0.0 0.0 Section Type Auto Design Innovyze Innovyze Innovyze Network 2020.0 Innovyze Section Type Auto Design Innovyze Innovyze Innovyze Innovyze Network 2020.0 Section Type Auto Design Innovyze Innovyze Innovyze Innovyze Section Type Poton	Mervue													
Date 12/11/2021 10:59 Designed by PMGD Checked by DK Designed by PMGD File SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK Network 2020.1 Network 00.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	Galway, Ireland													Micro
File SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK Definition Innovyze Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Network 2020.1 Sector State Network 2020.1 Sector State Network 2020.1 Sector State Sector State Network 2020.1 Sector State Network 2020.0 Sector State Network 2020.0 Sector State Network 2020.0 Network 2020.0 Network Results Table Network Results Table Network Re	Date 12/11/2021 10:59					Design	ed by PMGE	3						
Innovyze Network 2020.1 Network Design Table for Storm 2 - Upper site PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:3X) (ha) (mins) Flow (l/s) (mm) SECT (mm) Design 3.000 53.269 0.181 294.3 0.009 5.00 0.00 0.00 o 300 Pipe/Conduit 2.001 49.318 0.114 492.6 0.00 0.00 0.00 0.00 Pipe/Conduit 2.005 27.654 0.064 492.1 0.000 0.00 0.00 0.00 Pipe/Conduit 2.005 27.654 0.064 492.1 0.001 0.00 0.00 0.00 Pipe/Conduit 2.005 07.654 0.064 492.1 0.001 0.00 0.00 0.00 Pipe/Conduit 1.009 7.031 0.028 290.0 0.00 0.00 0.00 0.00 Pipe/Conduit 1.001 14.233 0.057 249.7 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Network Results Table PN Rain T.C. US/IL S I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) 0.00 7.07 198.369 0.001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<	File SHB3-BLN-CS-RPS-CA-0001.MDX					Checke	d by DK							Diamaye
Network Design Table for Storm 2 - Upper site PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 3.000 53.269 0.181 294.3 0.009 5.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduct Conduct 3.001 49.318 0.114 432.6 0.022 0.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduit Image: Co	Innovyze					Networ	k 2020.1							
Network Design Table for Storm 2 - Upper site PN Length (m) Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 3.000 53.269 0.181 294.3 0.009 5.00 0.0 0.600 0 3000 Pipe/Conduit 0 3.001 43.318 0.114 432.6 0.020 0.00 0.600 0 300 Pipe/Conduit 0 2.004 11.594 0.027 426.1 0.040 0.00 0.00 0.600 0 300 Pipe/Conduit 0 2.004 11.594 0.027 426.1 0.040 0.00 0.00 0.600 0 300 Pipe/Conduit 0 2.004 5.904 0.012 492.0 0.012 0.00 0.00 0.600 0 375 Pipe/Conduit 0 1.011 12.850 0.51 254.0 0.000 0.00 0.00 0.375 Pipe/Conduit 0 1.011 12.850 0.51 254.0 0.000 0.00														
PN Length (m) Fail (n) Slope (n) I.A.ea (n) T.E. (n) Base (mins) k Plow (1/s) HXD (m) DIA SECT Section Type (m) Auto Design 3.000 53.269 0.181 294.3 0.009 5.00 0.0 0.600 0 300 Pipe/Conduit Image: Conduct of the			Ne	etwor	k Desig	n Tabl	e for Stor	rm 2 -	- Upp	er s	ite			
(n) (n) (1:X) (ha) (mins) Flow (1/s) (m) SECT (ma) Design 3.000 53.269 0.181 294.3 0.009 5.00 0.0 0.60 0 300 Flow/Conduit 1 2.004 11.504 0.027 426.1 0.044 0.00 0.0 0.600 0 300 Flow/Conduit 1 2.004 11.504 0.027 426.1 0.000 0.00 0.00 300 Flow/Conduit 1 2.005 27.654 0.64 432.1 0.000 0.00 0.00 300 Flow/Conduit 1 1.008 5.904 0.012 492.0 0.012 0.00 0.00 0.00 315 Pipe/Conduit 1 1.011 12.250 0.051 254.0 0.000 0.00 0.00 0.00 375 Pipe/Conduit 1 1.011 12.250 0.051 254.0 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 1.10 0.5 <t< td=""><td>PN</td><td>Length</td><td>Fall</td><td>Slope</td><td>e I.Area</td><td>T.E.</td><td>Base</td><td>k</td><td>HYD</td><td>DIA</td><td>Sectio</td><td>on Tvpe</td><td>Auto</td><td></td></t<>	PN	Length	Fall	Slope	e I.Area	T.E.	Base	k	HYD	DIA	Sectio	on Tvpe	Auto	
3.000 53.269 0.181 294.3 0.009 5.00 0.0 0.600 o 300 Pipe/Conduit 2.004 11.504 0.027 426.1 0.044 0.00 0.00 0.600 o 300 Pipe/Conduit 2.004 11.504 0.027 426.1 0.044 0.00 0.00 0.600 o 300 Pipe/Conduit 2.005 27.654 0.064 432.1 0.055 0.00 0.00 0.00 o 300 Pipe/Conduit 1.008 5.904 0.012 0.00 0.00 0.00 0.00 o 300 Pipe/Conduit 0 1.011 12.230 0.057 249.7 0.000 0.00 0.00 o 375 Pipe/Conduit 0 1.011 12.230 0.051 254.0 0.000 0.00 0.00 o 375 Pipe/Conduit 0 3.000 5.007 1.98.550 0.009 0.0 0.22 0.91 64.4 1.5 3.000 50.00 7.07 198.369		(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)			Design	
3.001 3.001 3.02 0.003 0.00	2,000	52 260	0 1 0 1	204 3	> 0 000	5 00	0.0	0 600		200	Ding/(⁷ onduitt		
2.004 11.504 0.027 426.1 0.044 0.00 0.0 0.00	3.000	49.318	0.114	432.6	5 0.009 5 0.032	0.00	0.0	0.600	0	300	Pipe/(Conduit		
2.004 11.504 0.027 426.1 0.000 0.00											1		Ŭ	
2.005 27.654 0.064 432.1 0.005 0.00 0.0 0.0 0.0 0.0 0.00 0.00	2.004	11.504	0.027	7 426.1	1 0.044	0.00	0.0	0.600	0	300	Pipe/0	Conduit	÷ 🗳	
1.006 27.054 0.054 432.1 0.055 0.00 0.0 0.00	2.005	5 27.654	0.064	432.1	L 0.000	0.00	0.0	0.600	0	300	Pipe/(Conduit	្ត្រី	
1.008 5.904 0.012 492.0 0.012 0.00 0.0 0.600 0 375 Pipe/Conduit 1.009 7.031 0.028 250.0 0.000 0.00 0.00 0.600 0 375 Pipe/Conduit 1.011 12.850 0.051 254.0 0.000 0.00 0.00 0.600 o 375 Pipe/Conduit 1.011 12.850 0.051 254.0 0.000 0.00 0.00 0.00 o 375 Pipe/Conduit Network Results Table Network Results Table N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow 3.000 50.00 5.97 198.550 0.009 0.0 0.0 0.1 0.75 53.0 6.7 2.004 50.00 7.07 198.369 0.041 0.0 0.0 1.1 0.75 53.0 6.7 2.005 50.00 8.57 197.915 0.229 0.0 0.0<	2.006	27.654	0.064	432.1	L 0.055	0.00	0.0	0.600	0	300	Pipe/(Conduit	Ŭ	
1.009 7.031 0.028 250.0 0.000 0.00 0.0 0.0 0.00 0.0 0.00	1.008	5.904	0.012	2 492.0	0.012	0.00	0.0	0.600	0	375	Pipe/0	Conduit	e off	
1.010 14.233 0.057 249.7 0.000 0.00 0.0 0.600 0 375 Pipe/Conduit Network Results Table Network Results Table PN Rain T.C. US/IL E I.Area E Base Flow (1/s) Foul Add Flow (1/s) Vel Cap Flow (1/s) Flow (1/s) 3.000 50.00 5.97 198.550 0.009 0.0 0.0 0.2 0.91 64.4 1.5 3.001 50.00 7.07 198.369 0.041 0.0 0.0 6.2 0.76 53.4 37.2 2.004 50.00 7.96 197.942 0.229 0.0 0.0 6.2 0.76 53.4 37.2 2.006 50.00 9.91 197.851 0.284 0.0 0.0 7.7 0.75 53.0 46.1 1.008 50.00 9.91 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.001 50.00 10.21 197.572 0.496 0.0 0.0 13.4 1.14 126.1 80.7 <tr< td=""><td>1.009</td><td>7.031</td><td>0.028</td><td>3 250.0</td><td>0.000</td><td>0.00</td><td>0.0</td><td>0.600</td><td>0</td><td>375</td><td>Pipe/0</td><td>Conduit</td><td>. ď</td><td></td></tr<>	1.009	7.031	0.028	3 250.0	0.000	0.00	0.0	0.600	0	375	Pipe/0	Conduit	. ď	
1.011 12.850 0.051 254.0 0.000 0.00 0.00 o 375 Pipe/Conduit Network Results Table PN Rain (mm/hr) T.C. US/IL 2 I.Area E Base (ha) Foul (1/s) Add Flow (1/s) Vel Cap (m/s) Flow (1/s) Flow (1/s) 3.000 50.00 5.97 198.550 0.009 0.0 0.0 0.2 0.91 64.4 1.5 3.001 50.00 7.97 198.369 0.041 0.0 0.0 1.1 0.75 53.0 6.7 2.004 50.00 7.96 197.942 0.229 0.0 0.0 6.2 0.76 53.4 37.2 2.005 50.00 8.57 197.915 0.229 0.0 0.0 7.7 0.75 53.0 46.1 1.008 50.00 9.91 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.001 50.00 10.92 197.572 0.496 0.0 0.0 13.4 1.14 126.1	1.010	14.233	0.057	7 249.7	7 0.000	0.00	0.0	0.600	0	375	Pipe/0	Conduit	: 🙆	
Network Results Table PN Rain (mm/hr) T.C. (mins) US/IL (m) E I.Area (ha) E Base (ha) Foul (l/s) Add Flow (l/s) Vel (l/s) Cap (l/s) Flow (l/s) 3.000 50.00 5.97 198.550 0.009 0.0 0.0 0.22 0.91 64.4 1.5 3.001 50.00 7.07 198.369 0.041 0.0 0.0 6.2 0.76 53.4 37.2 2.004 50.00 7.96 197.942 0.229 0.0 0.0 6.2 0.76 53.4 37.2 2.005 50.00 8.57 197.915 0.229 0.0 0.0 7.7 0.75 53.0 46.1 1.008 50.00 9.19 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.009 50.00 10.21 197.772 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.010 50.00 10.22 197.7572 0.496 0.0 0.0 13.4 1.14 126.1	1.011	12.850	0.051	254.0	0.000	0.00	0.0	0.600	0	375	Pipe/0	Conduit	e of	
PN Rain (mm/hr) T.C. (mins) US/IL (m) E I.Area (ha) E Base Flow (1/s) Foul (1/s) Add Flow (1/s) Vel (m/s) Cap (1/s) Flow (1/s) 3.000 50.00 5.97 198.550 0.009 0.0 0.0 0.2 0.91 64.4 1.5 3.001 50.00 7.97 198.369 0.041 0.0 0.0 1.1 0.75 53.0 6.7 2.004 50.00 7.96 197.942 0.229 0.0 0.0 6.2 0.76 53.4 37.2 2.005 50.00 8.57 197.915 0.229 0.0 0.0 7.75 53.0 46.1 1.008 50.00 9.91 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.009 50.00 10.01 197.700 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.010 50.00 10.21 197.572 0.496					N	letwork	Results 1	able						
PN Rain T.C. 05/11 2 1. Area 2 Base Four Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) 3.000 50.00 5.97 198.550 0.009 0.0 0.0 0.2 0.91 64.4 1.5 3.001 50.00 7.07 198.369 0.041 0.0 0.0 1.1 0.75 53.0 6.7 2.004 50.00 7.96 197.942 0.229 0.0 0.0 6.2 0.76 53.4 37.2 2.005 50.00 8.57 197.915 0.229 0.0 0.0 6.2 0.75 53.0 37.2 2.006 50.00 9.91 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.008 50.00 9.91 197.712 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.010 50.		N D-i			110 / TT			T 1			**- 1	6		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P.	N RAI (mm/h	hr) (n	nins)	(m)	(ha)	Flow (1/s)	(1/s)	Add (1	riow /s)	vei (m/s)	(1/s)	(1/s)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		() -		,	()	()		(_/ -/	、	, -,	(, -,	(_/ -/	(_/_/	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0	000 50.	.00	5.97	198.550	0.009	0.0	0.0)	0.2	0.91	64.4	1.5	
2.004 50.00 7.96 197.942 0.229 0.0 0.0 6.2 0.76 53.4 37.2 2.005 50.00 8.57 197.915 0.229 0.0 0.0 6.2 0.75 53.0 37.2 2.006 50.00 9.19 197.851 0.284 0.0 0.0 7.7 0.75 53.0 46.1 1.008 50.00 9.91 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.009 50.00 10.01 197.700 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.010 50.00 10.22 197.572 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.011 50.00 10.41 197.515 0.496 0.0 0.0 13.4 1.14 126.1 80.7	3.0	001 50.	.00	7.07 1	198.369	0.041	0.0	0.0)	1.1	0.75	53.0	6.7	
2.005 50.00 8.57 197.915 0.229 0.0 0.0 6.2 0.75 53.0 37.2 2.006 50.00 9.19 197.851 0.284 0.0 0.0 7.7 0.75 53.0 46.1 1.008 50.00 9.91 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.009 50.00 10.01 197.700 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.010 50.00 10.22 197.572 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.011 50.00 10.41 197.515 0.496 0.0 0.0 13.4 1.14 126.1 80.7	2.0	04 50.	.00	7.96 1	197.942	0.229	.00	0.0)	6.2	0.76	53.4	37.2	
2.006 50.00 9.19 197.851 0.284 0.0 0.0 7.7 0.75 53.0 46.1 1.008 50.00 9.91 197.712 0.496 0.0 0.0 13.4 0.81 89.5 80.7 1.009 50.00 10.01 197.700 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.010 50.00 10.22 197.572 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.011 50.00 10.41 197.515 0.496 0.0 0.0 13.4 1.14 126.1 80.7	2.0	05 50.	.00	8.57 1	197.915	0.229	0.0	0.0)	6.2	0.75	53.0	37.2	
1.00850.009.91197.7120.4960.00.013.40.8189.580.71.00950.0010.01197.7000.4960.00.013.41.14126.180.71.01050.0010.22197.5720.4960.00.013.41.14126.180.71.01150.0010.41197.5150.4960.00.013.41.14126.180.7	2.0	06 50.	.00	9.19 1	197.851	0.284	1 0.0	0.0)	7.7	0.75	53.0	46.1	
1.000 50.00 50.10 50.12 0.496 0.0 0.13.4 0.14 126.1 80.7 1.009 50.00 10.01 197.700 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.010 50.00 10.22 197.572 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.011 50.00 10.41 197.515 0.496 0.0 0.0 13.4 1.13 125.0 80.7	1 (108 50	0.0	9 91 1	197 712	0 496	5 0 0)	13 /	0.81	89 5	80 7	
1.010 50.00 10.22 197.572 0.496 0.0 0.0 13.4 1.14 126.1 80.7 1.011 50.00 10.41 197.515 0.496 0.0 0.0 13.4 1.13 125.0 80.7	1.0)09 50.	.00 1	10.01	197.700	0.496	5 0.0		,)	13.4	1.14	126.1	80.7	
1.011 50.00 10.41 197.515 0.496 0.0 0.0 13.4 1.13 125.0 80.7	1.0)10 50.	.00 1	L0.22 1	197.572	0.496	5 0.0	0.0)	13.4	1.14	126.1	80.7	
	1.0)11 50.	.00 1	L0.41 1	197.515	0.496	5 0.0	0.0)	13.4	1.13	125.0	80.7	

PS (Galway)													Page 4		
Lyrr Building, IDA Bu	rr Building, IDA Business & Technology Park														
Mervue															
Galway, Ireland													Micro		
Date 12/11/2021 10:59	ate 12/11/2021 10:59 Designed by PMGB														
ile SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK															
Innovyze	Network 2020.1														
				Manho	le Sche	dules f	for Storm	2 – Upp	er si	te					
	MH	мн	MH	МН	мн		Pipe Out			Pipes In					
	Name	CL (m)	Depth	Connection	Diam.,L'	W PN	Invert	Diameter	PN	Invert	Diameter	Backdrop			
			(m)		(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)			
	S01	201 290	1 /25	Open Manhole	120	1 000	199 865	300							
	S02	201.620	1.840	Open Manhole	120	0 1.001	199.780	300	1.000	199.780	300				
	S03	202.400	2.681	Open Manhole	120	0 1.002	199.719	300	1.001	199.719	300				
	S04	202.500	2.842	Open Manhole	120	00 1.003	199.658	300	1.002	199.658	300				
	S05	202.570	2.951	Open Manhole	120	00 1.004	199.619	300	1.003	199.619	300				
	S06	201.385	2.514	Open Manhole	120	00 1.005	198.871	300	1.004	199.471	300	600			
	S07	200.945	2.194	Open Manhole	120	00 1.006	198.751	300	1.005	198.751	300				
	S08	200.080	1.392	Open Manhole	120	00 1.007	198.688	300	1.006	198.688	300				
	S10	199.710	1.425	Open Manhole	120	00 2.000	198.285	300							
	S11	199.710	1.564	Open Manhole	120	00 2.001	198.146	300	2.000	198.146	300				
	S12	199.710	1.584	Open Manhole	120	00 2.002	198.126	300	2.001	198.126	300				
	S13	199.705	1.671	Open Manhole	120	0 2.003	198.034	300	2.002	198.034	300				
	S17	199.975	1.425	Open Manhole	120	00 3.000	198.550	300							
	S18	200.065	1.696	Open Manhole	120	0 3.001	198.369	300	3.000	198.369	300				
	S14	199.705	1.763	Open Manhole	120	00 2.004	197.942	300	2.003	197.942	300				
									3.001	198.255	300	313			
	S15	199.645	1.730	Open Manhole	120	0 2.005	197.915	300	2.004	197.915	300				
	S16	199.645	1.794	Open Manhole	120	0 2.006	197.851	300	2.005	197.851	300				
	S09	199.645	1.933	Upen Manhole	135	00 1.008	197.712	375	1.007	198.652	300	865			
		100 645	1 0 4 5	On an March 1	1.05		107 700	275	2.006	197.787	300				
	I MH	100 645	1.945	open Manhole	135	0 1 010	107 570	3/5	1 000	197.700	3/5	100			
	P1 TNE	100 645	2.073	Open Manhole	135		107 515	3/5	1 010	107 515	3/5	TOO			
	TINE	199.045	2.130	open Mannole	135	,0 1 . 0 I I	191.010	375	1.010	191.010	375				

RPS (Galway)								Page 5
Lyrr Building, IDA Business & Techr	nology	/ Park						
Mervue								
Galway, Ireland								Micco
Date 12/11/2021 10:59			D	esigned by PM	1GB			
File SHB3-BLN-CS-RPS-CA-0001.MDX			C	hecked by DK				Drainage
Innovyze			N	etwork 2020.1	-			I
		Manho	le Sched	dules for Sto	rm 2 - Uppe	r site		
	MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection g Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)	
	S01	697530.188	713195.09	95 697530.188	713195.095	Required	6	
	S02	697541.962	713217.04	697541.962	713217.044	Required	4	
	S03	697552.389	713241.30	697552.389	713241.309	Required	1	
	S04	697562.817	713265.57	697562.817	713265.573	Required		
	S05	697569.392	713280.89	697569.392	713280.899	Required		
	S06	697630.054	713260.77	697630.054	713260.775	Required		
	S07	697622.269	713234.97	697622.269	713234.977	Required		
	S08	697614.484	713209.17	697614.484	713209.178	Required		
	S10	697788.950	713212.56	66 697788.950	713212.566	Required	•	
	S11	697776.044	713173.68	697776.044	713173.682	Required		
	S12	697769.473	713168.36	69 697769.473	713168.369	Required		
				1982-2020 Inr	lovvze			

RPS (Galway)								Page 6
Lyrr Building, IDA Business & Techno	ology	Park						
Mervue								
Galway, Ireland								Micro
Date 12/11/2021 10:59			De	signed by PM	IGB			
File SHB3-BLN-CS-RPS-CA-0001.MDX			Ch	ecked by DK				Diamage
Innovyze			Ne	etwork 2020.1				
		Manho	le Schedu	ules for Sto	rm 2 - Uppe:	r site		
	MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)	
	S13	697731.539	713180.273	697731.539	713180.273	Required		
	S17	697759.087	713222.842	2 697759.087	713222.842	Required	~	
	S18	697708.399	713239.223	697708.399	713239.223	Required	P	
	S14	697693.606	713192.176	697693.606	713192.176	Required	1	
	S15	697682.497	713189.184	4 697682.497	713189.184	Required		
	S16	697655.952	713196.934	4 697655.952	713196.934	Required		
	S09	697629.407	713204.685	5 697629.407	713204.685	Required		
	т мн	697631.133	713210.330	0 697631.133	713210.330	Required	4	
	PI	697633.021	713217.103	697633.021	713217.103	Required	-	
	INF	697646.645	713221.221	1 697646.645	713221.221	Required		
		697659.154	713218.279	9		No Entry	~~•	
			©1	982-2020 Inr	10VVZe			

RPS (Galway)								Page 7
Lyrr Building, IDA Business & Te	chnolo	gy Park						
Mervue								
Galway Ireland								
Gaiway, 1101and				DVG				MICCO
Date 12/11/2021 10:59			Designed by	PMGE	3			Drainage
File SHB3-BLN-CS-RPS-CA-0001.MDX			Checked by 1	DK				brainage
Innovyze			Network 202	0.1				· · · · ·
		Area	Summary for Sto	rm 2	- Upper	site		
	Pipe	ΡΤΜΡ	PTMP	ртмр	Gross	Tmp	Pipe Total	
	Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)	
		-77-0		(•)			()	
	1.000	Classification	Pitched Roof	90	0.007	0.006	0.006	
		Classification 1	Permeable Pavement	60	0.020	0.012	0.018	
	1.001	Classification	Pitched Roof	90	0.010	0.009	0.009	
		Classification 1	Permeable Pavement	60	0.012	0.007	0.016	
	1.002	Classification	Pitched Roof	90	0.012	0.011	0.011	
		Classification 1	Permeable Pavement	60	0.013	0.008	0.019	
	1.003	Classification	Pitched Roof	90	0.012	0.011	0.011	
		Classification 1	Permeable Pavement	60	0.024	0.014	0.025	
	1.004	Classification	Flat Roof	90	0.013	0.012	0.012	
		Classification	pavement	75	0.008	0.006	0.018	
	1.005	Classification 1	Permeable Pavement	60	0.013	0.008	0.008	
		Classification	Flat Roof	90	0.013	0.012	0.020	
		Classification	pavement	75	0.036	0.027	0.046	
	1.006	Classification 1	Permeable Pavement	60	0.013	0.008	0.008	
		Classification	pavement	75	0.021	0.015	0.024	
		Classification	Pitched Roof	90	0.008	0.007	0.031	
	1.007	Classification 1	Permeable Pavement	60	0.016	0.009	0.009	
		Classification	pavement	75	0.015	0.011	0.021	
		Classification	Pitched Roof	90	0.009	0.008	0.028	
	2.000	Classification	Pitched Roof	90	0.008	0.008	0.008	
		Classification	Flat Roof	90	0.007	0.006	0.014	
		Classification	pavement	75	0.024	0.018	0.032	
		Classification 1	Permeable Pavement	60	0.013	0.008	0.039	
	2.001	Classification 1	Permeable Pavement	60	0.009	0.006	0.006	
		Classification	pavement	75	0.018	0.014	0.019	
	2.002	Classification 1	Permeable Pavement	60	0.018	0.011	0.011	
		Classification 1	Permeable Pavement	60	0.014	0.008	0.019	
	2.003	Classification	pavement	75	0.026	0.020	0.020	
		Classification	Pitched Roof	90	0.018	0.016	0.036	
		Classification	Pitched Roof	90	0.013	0.012	0.048	
		Classification 1	Permeable Pavement	60	0.017	0.010	0.058	
		Classification 1	Permeable Pavement	60	0.013	0.008	0.066	
	3.000	Classification	Pitched Roof	90	0.010	0.009	0.009	
	3.001	Classification	Flat Roof	90	0.007	0.006	0.006	
		Classification	Pitched Roof	90	0.010	0.009	0.015	
			©1982-2020	Innov	vyze			

yrr Building, IDA Business & Technology Park ervue alway, Ireland ate 12/11/2021 10:59 ile SHB3-BLN-CS-RPS-CA-0001.MDX nnovyze Network 2020.1 Area Summary for Storm 2 - Upper site Pipe PIMP PIMP PIMP PIMP Gross Imp. Pipe Total (%) Area (ha) Area (ha) (ha) Classification pavement 75 0.023 0.017 0.032 2.004 Classification pavement 75 0.024 0.018 0.018 Classification Permeable Pavement 60 0.010 0.008 0.026 Classification pavement 75 0.020 0.002 0.027 Classification pavement 75 0.020 0.002 0.027 Classification pavement 75 0.002 0.002 0.026 Classification pavement 75 0.002 0.002 0.027 Classification pavement 75 0.008 0.018 Classification pavement 75 0.008 0.026 Classification pavement 75 0.008 0.026 Classification pavement 75 0.008 0.004 0.038 Classification pavement 75 0.008 0.004 0.038 Classification pavement 75 0.023 0.011 0.032 Classification pavement 75 0.024 0.024 0.024 Classification pavement 75 0.032 0.024 0.024 Classification Patheod 90 0.007 0.006 0.000 2.006 Classification Patheod 90 0.007 0.006 1.008 Classification Pitheod Roof 90 0.013 0.012 0.012 1.009 100 0.000 0.000 0.000
lervue alway, Ireland ate 12/11/2021 10:59 ile SHB3-BLN-CS-RPS-CA-0001.MDX nnovyze Network 2020.1 Classification parement 75 0.023 0.017 0.032 Classification parement 75 0.024 0.018 0.018 Classification parement 75 0.022 0.017 0.032 Classification parement 75 0.022 0.017 0.032 Classification parement 75 0.022 0.012 0.012 Classification parement 75 0.022 0.012 0.012 Classification parement 75 0.022 0.012 0.012 Classification Paremeable Parement 60 0.011 0.006 0.034 Classification Paremeable Parement 60 0.011 0.006 0.034 Classification Paremeable Parement 75 0.022 0.021 0.023 Classification Paremeable Parement 60 0.011 0.006 0.034 Classification Paremeable Parement 75 0.032 0.024 0.024 Classification Paremeable Parement 60 0.010 0.000 0.000 Classification Paremeable Parement 75 0.032 0.024 0.024 Classification Paremeable Parement 60 0.010 0.000 0.000 Classification Paremeable Parement 60 0.010 0.000 0.000 Classification Paremeable Parement 60 0.010 0.000 0.000 Classification Paremeable Parement 75 0.032 0.024 0.024 Classification Pite Roof 90 0.008 0.007 0.055 Classification Pite Roof 90 0.008 0.007 0.055 Classification Pite Roof 90 0.008 0.000 0.000 Classification Pite Roof 90 0.008 0.000 0.000 Classification Pite Roof 90 0.000 0.000 0.000
alway, Ireland ate 12/11/2021 10:59 ile SHB3-BLN-CS-RPS-CA-0001.MDX Network 2020.1 Area Summary for Storm Z - Upper site Network 2020.1 Area Summary for Storm Z - Upper site Pipe PIMP PIMP Rom PIMP Gross Imp. Pipe Total (%) Area (ha) Area (ha) (ha) Classification pavement 75 0.023 0.017 0.032 2.004 Classification pavement 75 0.023 0.017 0.032 2.004 Classification pavement 75 0.024 0.018 Classification pavement 75 0.020 0.000 0.000 Classification Permeable Pavement 60 0.011 0.006 0.034 Classification Permeable Pavement 60 0.011 0.006 0.034 Classification Permeable Pavement 75 0.002 0.000 0.000 Classification Plate Roof 90 0.007 0.006 0.004 2.005 100 0.000 0.000 0.000 Classification Permeable Pavement 60 0.011 0.006 0.034 Classification Plate Roof 90 0.007 0.055 Classification Permeable Pavement 60 0.010 0.000 2.006 Classification Permeable Pavement 60 0.000 0.000 2.006 Classification Permeable Pavement 60 0.000 0.000 2.006 Classification Permeable Pavement 60 0.001 0.005 Classification Permeable Pavement 75 0.032 0.024 0.024 Classification Permeable Pavement 60 0.001 0.005 1.008 Classification Permeable Pavement 60 0.000 0.000 0.000 1.009 100 0.000 0.000 0.000 1.009 100 0.000 0.000 0.000
Pate 12/11/2021 10:59 Designed by PMGB Checked by DK nnovyze Network 2020.1 Area Summary for Storm 2 - Upper site Pipe PIMP PIMP RMP Gross Imp. Pipe Total 0.002 0.017 0.032 2.004 Classification pavement 75 0.023 0.017 0.032 Classification pavement 75 0.023 0.017 0.032 Classification pavement 75 0.020 0.027 Classification pavement 75 0.000 0.004 Classification pavement 75 0.002 0.027 Classification Plate Roof 90 0.007 0.006 0.044 Classification Plate Roof 90 0.007 0.006 0.044 2.005 - - - - 100 0.024 0.044 Classification Plate Roof 90 0.007 0.066 0.044 0.024 Classification Plate Roof 90 0.0013 0.012 0.01
Tile SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK During nnovyze Network 2020.1 Area Summary for Storm 2 - Upper site Pipe PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) 0.017 0.032 Classification pavement 75 0.023 0.017 0.032 Classification pavement 75 0.024 0.018 0.018 Classification pavement 75 0.002 0.002 0.026 Classification pavement 75 0.002 0.002 0.026 Classification pavement 75 0.002 0.002 0.027 Classification pavement 75 0.002 0.004 0.038 Classification pavement 75 0.032 0.024 0.044 Classification pavement 75 0.032 0.024 0.044 Classification pavement 75 0.032 0.024 0.048 Classification pa
nnovyze Network 2020.1 Area Summary for Storm 2 - Upper site Pipe PIMP PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) (ha) Classification pavement 75 0.023 0.017 0.032 2.004 Classification pavement 75 0.024 0.018 0.018 Classification pavement 75 0.002 0.002 0.027 Classification pavement 75 0.006 0.044 Classification pavement 75 0.006 0.044 Classification pavement 75 0.002 0.027 Classification pavement 75 0.006 0.044 Classification pavement 75 0.032 0.24 Classification pavement 75 0.032 0.024
Area Summary for Storm 2 - Upper site Pipe PIMP PIMP Rose Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) Hotal Classification pavement 75 0.023 0.017 0.032 2.004 Classification pavement 75 0.024 0.018 0.018 Classification pavement 75 0.002 0.002 0.027 Classification pavement 75 0.002 0.027 Classification pavement 75 0.006 0.034 Classification pavement 75 0.006 0.004 0.038 Classification pavement 75 0.032 0.024 0.024 Classification Patement 60 0.040 0.024
Pipe NumberPIMP TypePIMP NamePIMP (%)Gross AreaImp. AreaPipe Total (ha)00
Pipe NumberPIMP TypePIMP NumePIMP (%)Gr os NewImp.Pipe TotalClassification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Classification Permeable Pavement Pavement Pavement Classification Classification Classification Classification Classification Permeable Pavement Pavement Pavement Classification Classification Classification Classification Pavement Classification Classification Pavement Pavemen
PipePipePimePimeGrossImp.PipePipePotalNumberTypeName(%)Area(ha)Area(ha)Area(ha)AreaClassificationpavement750.0230.0170.032ClassificationPermeablePavement600.0130.0080.026ClassificationPermeablePavement750.0020.0020.027ClassificationPermeablePavement750.0060.0340.038ClassificationPermeablePavement750.0000.0060.0442.0051000.0000.0000.000ClassificationPermeable Pavement600.0120.0240.024ClassificationPermeable Pavement750.0220.0240.0442.0051000.0000.0000.000ClassificationPermeable Pavement600.0440.038ClassificationPermeable Pavement600.0440.0240.048ClassificationPermeable Pavement600.0400.0240.048ClassificationPethed Roof900.0130.0120.012ClassificationPitched Roof900.0130.0120.0121.0091000.0000.0000.0001.0101000.0000.0000.000
Number Type Name (*) Area (ha) Area (ha) (ha) Classification pavement 75 0.023 0.017 0.032 2.004 Classification pavement 75 0.024 0.018 0.018 Classification Permeable Pavement 60 0.013 0.008 0.027 Classification Permeable Pavement 60 0.011 0.006 0.034 Classification Permeable Pavement 75 0.006 0.044 Classification Flat Roof 90 0.007 0.006 0.044 2.005 - - 100 0.000 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 Classification Permeable Pavement 60 0.003 0.000 0.004 2.006 Classification Permeable Pavement 60 0.024 0.024 Classification Permeable Pavement 60 0.003 0.005 0.012 Classification Permeab
Classification pavement 75 0.023 0.017 0.032 2.004 Classification pavement 75 0.024 0.018 0.018 Classification Permeable Pavement 60 0.013 0.008 0.026 Classification Permeable Pavement 75 0.002 0.027 0.027 Classification Permeable Pavement 75 0.006 0.004 0.038 Classification Permeable Pavement 75 0.006 0.004 0.038 Classification Flat Roof 90 0.007 0.006 0.044 2.005 - - 100 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 2.005 - - 100 0.000 0.002 0.055 1.008 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Pitched Roof 90 0.013 0.012 0.015 0.012
2.004 Classification pavement 75 0.024 0.018 0.018 Classification Permeable Pavement 60 0.013 0.008 0.026 Classification pavement 75 0.002 0.002 0.027 Classification Permeable Pavement 60 0.011 0.006 0.034 Classification Permeable Pavement 75 0.006 0.004 0.038 Classification Flat Roof 90 0.007 0.006 0.044 2.005 - - 100 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.044 2.005 - - 100 0.000 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.044 2.005 - - 100 0.000 0.024 0.048 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Fla
Classification Permeable Pavement 60 0.013 0.008 0.026 Classification pavement 75 0.002 0.002 0.027 Classification Permeable Pavement 60 0.011 0.006 0.034 Classification pavement 75 0.006 0.004 0.038 Classification Flat Roof 90 0.007 0.006 0.044 2.005 - 100 0.000 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Permeable Pavement 60 0.040 0.025 1.008 Classification Pitched Roof 90 0.013 0.012 0.012 1.009 - 100 0.000 0.000 0.000
Classification pavement 75 0.002 0.027 Classification Permeable Pavement 60 0.011 0.006 0.034 Classification pavement 75 0.006 0.004 0.038 Classification Flat Roof 90 0.007 0.006 0.044 2.005 - - 100 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 2.006 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Pitched Roof 90 0.013 0.012 0.012 1.008 Classification Flat Roof 90 0.000 0.000 0.000 1.010 - - 100 0.000 0.000 0.000
Classification Permeable Pavement 60 0.011 0.006 0.034 Classification pavement 75 0.006 0.004 0.038 Classification Flat Roof 90 0.007 0.006 0.044 2.005 100 0.000 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Pitched Roof 90 0.008 0.007 0.055 1.008 Classification Flat Roof 90 0.013 0.012 0.012 1.009 100 0.000 0.000 0.000
Classification pavement 75 0.006 0.004 0.038 Classification Flat Roof 90 0.007 0.006 0.044 2.005 - - 100 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Pitched Roof 90 0.008 0.007 0.055 1.008 Classification Flat Roof 90 0.013 0.012 0.012 1.009 - - 100 0.000 0.000 0.000 0.000 1.010 - - 100 0.000 0.000 0.000
Classification Flat Roof 90 0.007 0.006 0.044 2.005 - - 100 0.000 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Pitched Roof 90 0.008 0.007 0.055 1.008 Classification Flat Roof 90 0.013 0.012 0.012 1.009 - - 100 0.000 0.000 0.000 0.000 1.010 - - 100 0.000 0.000 0.000
2.003 - - 100 0.000 0.000 0.000 2.006 Classification pavement 75 0.032 0.024 0.024 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Pitched Roof 90 0.008 0.007 0.055 1.008 Classification Flat Roof 90 0.013 0.012 0.012 1.009 - - 100 0.000 0.000 0.000 0.000 1.010 - - 100 0.000 0.000 0.000
2.000 Classification Permeable Pavement 60 0.024 0.024 Classification Permeable Pavement 60 0.040 0.024 0.048 Classification Pitched Roof 90 0.008 0.007 0.055 1.008 Classification Flat Roof 90 0.013 0.012 0.012 1.009 - - 100 0.000 0.000 0.000 1.010 - - 100 0.000 0.000 0.000
Classification Pitched Roof 90 0.008 0.007 0.055 1.008 Classification Flat Roof 90 0.013 0.012 0.012 1.009 - - 100 0.000 0.000 0.000 1.010 - - 100 0.000 0.000 0.000
1.008 Classification Flat Roof 90 0.013 0.012 0.012 1.009 - - 100 0.000 0.000 0.000 1.010 - - 100 0.000 0.000 0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.010 100 0.000 0.000 0.000
1.011 100 0.000 0.000 0.000
Total Total Total
0.677 0.496 0.496
Europe Elevine Outfall Dataila fau Otaum 2 - Manau aita
Free Flowing Outlait Details for Storm 2 - Opper Site
Outfall Outfall C. Level I. Level Min D,L W
Pipe Number Name (m) (m) I. Level (mm) (mm)
(m)
1.011 199.645 197.464 0.000 0 0

Lyrr Building, IDA Business & Technology Park Mervue Galway, Ireland Date 12/11/2021 10:59 Designed by PMGB	
Mervue Galway, Ireland Date 12/11/2021 10:59 Designed by PMGB	
Galway, Ireland Date 12/11/2021 10:59 Designed by PMGB	
Date 12/11/2021 10:59 Designed by PMGB	Mirro
	Dcainago
File SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK	Diamage
Innovyze Network 2020.1	
Simulation Criteria for Storm 2 - Upper site	
Volumetric Runoff Coeff 1.000 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficcient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (l/s) 0.000 Flow per Person per Day (l/per/day) 0.000 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m ³ /ha Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 1 Number of Real Time Controls 0	
Synthetic Rainfall Details	
Rainfall Model FSR M5-60 (mm) 16.400 Cv (Summer) 1.000 Return Period (years) 100 Ratio R 0.215 Cv (Winter) 1.000 Region Scotland and Ireland Profile Type Summer Storm Duration (mins) 30	

RPS (Galway)		Page 10								
Lyrr Building, IDA Business & Technology Park										
Mervue										
Galway, Ireland		Mirro								
Date 12/11/2021 10:59	Designed by PMGB	Dcainago								
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked by DK	Diamage								
Innovyze	Network 2020.1									
Storage Str	uctures for Storm 2 - Upper site									
Infiltration	Basin Manhole: INF, DS/PN: 1.011									
Invert Level (m) 196 Infiltration Coefficient Base (m/hr) 0.1	Invert Level (m) 196.650 Infiltration Coefficient Side (m/hr) 0.15700 Porosity 0.95 Infiltration Coefficient Base (m/hr) 0.15700 Safety Factor 5.0									
Depth (m) Area (m	2) Depth (m) Area (m ²) Depth (m) Area (m ²)									
0.000 371.	.2 0.800 371.2 0.801 0.0									
	@1002_2020_Tapovyzo									
	SIJOZ-ZUZU IIIIOVYZE									

RPS (Galway)								Page	11
Lyrr Building, IDA Business & Technology Park									
Mervue									
Galway, Ireland									Micco
Date 12/11/2021 10:59	Designed	by PMGB						-	
File SHB3-BLN-CS-RPS-CA-0001.MDX Checked by DK									Digiliada
Innovyze	Network	2020.1							
Summary of Critical Resul	ts by Maximum	n Level (R	ank 1)	for St	orm 2 -	Upper si	te		
	Cimulati	on Critoria							
Areal Reduction Factor 1.000 Manhole	Headloss Coeff	(Global) 0.	.500	MADD	Factor *	10m³/ha St	orage 2.000		
Hot Start (mins) 0 Foul S	Sewage per hecta	are (1/s) 0.	.000		Inl	et Coeffie	cient 0.800		
Hot Start Level (mm) 0 Additional	l Flow - % of To	otal Flow 0.	.000 Flow	w per Pe	erson per	Day (l/per	/day) 0.000		
Number of Input Hydrographs ()	Number of Of	fline Contr	ols () Nu	mber of	Time/Are	a Diagrams	0		
Number of Online Controls 0	Number of Stor	age Structu	res 1 Nu	mber of mber of	Real Tim	e Controls	0		
		-							
Deinfell Medel	Synthetic R	ainfall Deta	ails	C (C		0.0			
Region Scot	נים land and Irelan	d Ratio	R 0.233	Cv (Su Cv (Wi	nter) 1.0	00			
					,,				
Margin for Flood Risk	Warning (mm)	300.0 DTS St	atus ON	I Inert	ia Status	OFF			
Anal	ysis Timestep.	Fine DVD St	atus OFF	7					
Profile(s)						Summer and	d Winter		
Duration(s) (mins) 15, 30,	, 60, 120, 180,	240, 360, 4	180, 600,	720, 9	60, 1440,	2160, 288	0, 4320,		
Return Period(s) (years)					5760,	1200, 864	30, 10080		
Climate Change (%)						20	, 20, 20		
	Water	Surcharged	Flooded				Half Drain	Pine	
US/MH First (Y)	US/CL Level	Depth	Volume	Flow /	Maximum	Discharge	Time	Flow	
PN Name Event Flood	(m) (m)	(m)	(m³)	Cap.	Vol (m³)	Vol (m³)	(mins)	(l/s)	Status
1 000 S01 30 minute 100 year Summer I+20% 2	201 290 199 957	-0 208	0 000	0 14	0 099	5 331		83	OK
1.001 S02 15 minute 100 year Summer I+20% 2	201.620 199.926	-0.154	0.000	0.31	0.665	7.005		14.9	OK
1.002 S03 15 minute 100 year Summer I+20% 2	202.400 199.899	-0.120	0.000	0.46	1.057	10.794		21.8	OK
1.003 S04 15 minute 100 year Summer I+20% 2	202.500 199.868	-0.090	0.000	0.77	1.301	15.896		31.0	OK
1.004 S05 15 minute 100 year Summer I+20% 2	202.570 199.817	-0.102	0.000	0.75	0.824	19.522		37.9	OK
1.005 S06 30 minute 100 year Summer I+20% 2	201.385 199.225	0.054	0.000	0.79	0.395	41.298		52.4	SURCHARGED
1.006 S07 30 minute 100 year Summer I+20% 2	200.945 199.145	0.094	0.000	1.31	2.226	50.247		62.7	SURCHARGED
1.007 S08 30 minute 100 year Summer I+20% 2	200.080 199.034	0.046	0.000	1.89	2.138	58.468		71.8	SURCHARGED
2.000 S10 30 minute 100 year Summer I+20% 1	99.710 198.740	0.155	0.000	0.25	0.509	11.469		14.9	SURCHARGED
2.001 S11 30 minute 100 year Summer I+20% 1	99.710 198.720	0.274	0.000	0.58	3.455	17.079		20.0	SURCHARGED
	©1982-20	20 Innovvz	ze						

RPS (Galway)		Page 12					
Lyrr Building, IDA Business & Technology Park							
Mervue							
Galway, Ireland		Mirro					
Date 12/11/2021 10:59	Designed by PMGB						
File SHB3-BLN-CS-RPS-CA-0001.MDX	Checked by DK	Diamage					
Innovyze	Network 2020.1						
Summary of Critical Results b	y Maximum Level (Rank 1) for Storm 2 - Upper site						
US/MH First (Y) US/C	Water Surcharged Flooded Half Drain CL Level Depth Volume Flow / Maximum Discharge Time	Pipe Flow					

PN	Name	Event	Flood	(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	Vol (m³)	(mins)	(1/s)	Status
2.002	S12	30 minute 100 year Summer T+20%		199.710	198.708	0.282	0.000	0.49	1,166	22.602		24.0	SURCHARGED
2.003	S13	30 minute 100 year Summer I+20%		199.705	198.674	0.340	0.000	0.86	3.443	41.826		42.4	SURCHARGED
3.000	S17	30 minute 100 year Summer I+20%		199.975	198.625	-0.225	0.000	0.06	0.080	2.611		3.9	OK
3.001	S18	30 minute 100 year Summer I+20%		200.065	198.618	-0.051	0.000	0.32	2.156	11.913		16.1	OK
2.004	S14	30 minute 100 year Summer I+20%		199.705	198.605	0.363	0.000	1.69	6.592	66.573		60.7	SURCHARGED
2.005	S15	30 minute 100 year Summer I+20%		199.645	198.552	0.337	0.000	1.28	1.443	66.567		61.2	SURCHARGED
2.006	S16	30 minute 100 year Summer I+20%		199.645	198.454	0.303	0.000	1.49	2.546	82.544		71.5	SURCHARGED
1.008	S09	30 minute 100 year Summer I+20%		199.645	198.306	0.219	0.000	1.96	2.707	144.427		145.7	SURCHARGED
1.009	T MH	30 minute 100 year Summer I+20%		199.645	198.166	0.091	0.000	1.71	1.159	144.440		145.5	SURCHARGED
1.010	PI	30 minute 100 year Summer I+20%		199.645	198.010	0.063	0.000	1.45	1.135	144.455		145.1	SURCHARGED
1.011	INF	600 minute 100 year Winter I+20%		199.645	197.579	-0.311	0.000	0.06	283.635	12.781	860	6.0	OK

Appendix C

Surface Water Infiltration Design Output and Sizing

- SHB3-BLN-CS-RPS-CA-002 Infiltration Design Calculations Lower Catchment
- SHB3-BLN-CS-RPS-CA-002 Infiltration Design Calculations Upper Catchment

Infiltration Design Calculations – Lower Catchment

RPS (Galway)						Page 1				
Lyrr Building, IDA Busines.	s									
Mervue										
Galway, Ireland						Mirro				
Date 12/11/2021 11:24	I	Designed	by PMG	B		Drainage				
File SHB3-BLN-CS-RPS-CA-000	2 (by DK			Drainiacje					
Innovyze										
Summary of Results for 100 year Return Period (+20%)										
	105 10	<u>1 100 yc</u>	ar necu		u (1208)					
Hal	f Drair	n Time : 1	241 minut	ces.						
Storm	Max	Max	Max	Max	Status					
Event	Level	Depth I	nfiltrati	ion Volume						
	(m)	(m)	(1/s)	(m³)						
15 min Summer	196.47	79 0.220	1	1.4 52.3	ОК					
30 min Summer	196.57	73 0.314	-	1.5 74.5	O K					
60 min Summer	196.67	75 0.416	-	1.5 98.8	O K					
120 min Summer 180 min Summer	196./8	57 U.528 56 0.597	-	1.5 125.4 1.6 141 8	OK					
240 min Summer	196.90	0.646		1.6 153.4	ОК					
360 min Summer	196.97	72 0.713	1	1.6 169.4	O K					
480 min Summer	197.01	6 0.757	-	1.6 179.8	ОК					
720 min Summer	197.04	6 0.807	-	1.6 186.8 1.6 191.7	O K					
960 min Summer	197.08	39 0.830	1	1.6 197.1	ΟK					
1440 min Summer	197.10	0.850	-	1.6 201.9	O K					
2160 min Summer 2880 min Summer	197.11	4 0.855	-	1.6 203.1 1.6 201 7	OK					
4320 min Summer	197.07	79 0.820		1.6 194.8	0 K					
5760 min Summer	197.04	10 0.781	-	1.6 185.5	O K					
7200 min Summer	196.99	0.737	-	1.6 175.0	ОК					
10080 min Summer	196.95	0.692	-	1.6 164.3 1.6 153.6	O K					
15 min Winter	196.50	06 0.247	-	1.5 58.8	ОК					
Sto	rm	Rain	Flooded	Time-Peak						
Eve	nt	(mm/hr)	Volume (m ³)	(mins)						
			、 <i>)</i>							
15 mir	1 Summer	r 80.285	0.0	22						
60 mir	1 Summei	r 38.681	0.0	57						
120 mir	n Summer	r 25.203	0.0	126						
180 mir	n Summer	r 19.445	0.0	184						
240 mir 360 mir	ı summeı 1 Summer	r 12.374	0.0	244 364						
480 mir	n Summer	r 10.236	0.0	482						
600 mir	n Summer	r 8.831	0.0	602						
720 mir 960 mir	1 Summer	r 7.825 r 6.466	0.0	720 932						
1440 mir	1 Summer	r 4.937	0.0	1170						
2160 mir	n Summer	r 3.761	0.0	1560						
2880 mir	1 Summer	r 3.098	0.0	1988						
4320 mir 5760 mir	1 Summei 1 Summei	r 1.936	0.0	2812 3640						
7200 mir	n Summer	r 1.664	0.0	4472						
8640 mir	n Summer	r 1.471	0.0	5272						
10080 mir 15 mir	ı Summeı n Winter	r 1.326 r 80.285	0.0	6056 22						
	©1982	2-2020 In	nnovyze							

RPS (Galway)						Page 2
Lyrr Building, IDA Business	s					
Mervue						
Galway, Ireland						Micco
Date 12/11/2021 11:24]	Designed	by PMGB			
File SHB3-BLN-CS-RPS-CA-0002	2 (Checked	by DK			Dialitada
Innovyze		Source C	ontrol 2	020.1		
Summary of Resul	ts fo	r 100 ye	ar Retur	n Period	l (+20%)	
Storm	Max	Max	Max	Max	Status	
Event	Level	L Depth I	nfiltratio	on Volume		
	(m)	(m)	(1/s)	(m³)		
30 min Winter	196.61	L2 0.353	1.	.5 83.7	ОК	
60 min Winter	196.72	27 0.468	1.	.5 111.2	O K	
120 min Winter	196.85	55 0.596	1.	.6 141.6	O K	
180 min Winter	196.93	35 0.676	1.	.6 160.6	ΟK	
240 min Winter	196.99	93 0.734	1.	.6 174.2	ОК	
360 min Winter	197.07	/3 0.814	1.	.6 193.3	OK	
480 min Winter	197 16	2/ U.868 56 0 907	1	·U 206.2	ΟK	
720 min Winter	197 19	94 0.935	1	.7 222 1	0 K	
960 min Winter	197.23	31 0.972	1	.7 230.7	0 K	
1440 min Winter	197.25	56 0.997	1	.7 236.8	0 K	
2160 min Winter	197.25	57 0.998	1.	.7 237.0	ОК	
2880 min Winter	197.24	41 0.982	1.	.7 233.3	O K	
4320 min Winter	197.18	34 0.925	1.	.7 219.8	O K	
5760 min Winter	197.11	L2 0.853	1.	.6 202.7	O K	
7200 min Winter	197.03	36 0.777	1.	.6 184.5	ОК	
8640 min Winter	196.96	50 0.701	1.	.6 166.4	ОК	
10080 min Winter	196.88	36 0.627	1.	.6 148.9	ΟK	
Stor	rm	Rain	Flooded T	'ime-Peak		
Stor	rm nt	Rain (mm/hr)	Flooded T Volume	'ime-Peak (mins)		
Stor Ever	rm ht	Rain (mm/hr)	Flooded T Volume (m ³)	'ime-Peak (mins)		
Sto: Ever	rm ht	Rain (mm/hr)	Flooded I Volume (m ³)	'ime-Peak (mins)		
Stor Ever 30 min	rm nt Winte:	Rain (mm/hr) r 57.512	Flooded T Volume (m ³)	'ime-Peak (mins) 36		
Stor Ever 30 min 60 min 120 min	rm nt Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203	Flooded T Volume (m ³) 0.0 0.0	'ime-Peak (mins) 36 66		
Stor Ever 30 min 60 min 120 min 180 min	winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445	Flooded T Volume (m ³) 0.0 0.0 0.0	Time-Peak (mins) 36 66 124 182		
Stor Ever 30 min 60 min 120 min 180 min 240 min	rm nt Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Time-Peak (mins) 36 66 124 182 240		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min	rm Minte Winte Winte Winte Winte Winte	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	'ime-Peak (mins) 36 66 124 182 240 356		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min	rm ht Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Time-Peak (mins) 36 66 124 182 240 356 472		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min	rm ht Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	time-Peak (mins) 36 66 124 182 240 356 472 588		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min	rm Minte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	'ime-Peak (mins) 36 66 124 182 240 356 472 588 700		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min	winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Time-Peak (mins) 36 66 124 182 240 356 472 588 700 924		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min	winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Sime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min	Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	lime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min	Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.252	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2ime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	<pre>m t Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:</pre>	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 10.236 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	rm ht Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	rm ht Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624 6456		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	rm ht Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Sime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624 6456		
Stoj Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	rm ht Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>lime-Peak (mins)</pre>		
Stoj Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min 10080 min	rm ht Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	lime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624 6456		
Stoj Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	lime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624 6456		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2880 min 4320 min 5760 min 7200 min 8640 min 10080 min	Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	lime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624 6456		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	rm ht Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte: Winte:	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 12.374 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Pime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624 6456		
Stor Ever 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min 10080 min	cm Ninte: Wi	Rain (mm/hr) r 57.512 r 38.681 r 25.203 r 19.445 r 16.136 r 10.236 r 10.236 r 8.831 r 7.825 r 6.466 r 4.937 r 3.761 r 3.098 r 2.353 r 1.936 r 1.664 r 1.471 r 1.326	Flooded T Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Pime-Peak (mins) 36 66 124 182 240 356 472 588 700 924 1340 1672 2140 3072 3976 4824 5624 6456		

RPS (Galway)		Page 3
Lyrr Building, IDA Business		
Mervue		
Galway, Ireland		Mirro
Date 12/11/2021 11:24	Designed by PMGB	Dcainago
File SHB3-BLN-CS-RPS-CA-0002	Checked by DK	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 199.100

Infiltration Basin Structure

Invert Level (m) 196.259 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.09900 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.09900

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000	250.0	1.200	250.0	1.201	0.0
-------	-------	-------	-------	-------	-----

RPS (Galway)						Page 1
Lyrr Building, IDA Bu	usiness					
Mervue						
Galway, Ireland						Micco
Date 12/11/2021 11:26		Designed	by PMGH	3		
File SHB3-BLN-CS-RPS-0	CA-0002	Checked	bv DK			Dialinage
Innovyze						
Summary of	f Results f	or 100 ye	ar Retu	rn Period	l (+20%)	
	Half Dra	in Time :	651 minut	es.		
Stor	m Max	. Mou	Marr	Maw	Status	
Ever	nt. Leve	l Depth 1	nfiltrati	ion Volume	Status	
	(m)	(m)	(1/s)	(m ³)		
15 min 30 min	Summer 196.8	355 0.205 343 0 293	3	3.4 /2.2	OK	
60 min	Summer 197.0	0.387	3	3.5 136.4	ОК	
120 min	Summer 197.1	36 0.486	3	3.5 171.4	ΟK	
180 min	Summer 197.1	93 0.543	3	3.6 191.5	O K	
240 min	Summer 197.2	231 0.581	3	3.6 204.9	O K	
360 min	Summer 197.2	276 0.626	3	3.6 220.9	ОК	
480 min 600 min	Summer 197.2	299 0.649	3	3.6 228.9	OK	
720 min	Summer 197.3	321 0.671	3	3.6 236.6	0 K	
960 min	Summer 197.3	331 0.681	3	3.6 240.1	ΟK	
1440 min	Summer 197.3	334 0.684	3	3.6 241.1	O K	
2160 min	Summer 197.3	318 0.668	3	3.6 235.7	O K	
2880 min	Summer 197.2	292 0.642	3	3.6 226.4	ОК	
4320 min 5760 min	Summer 197.2	26 0.576	3	3.6 203.2 3.5 178 7	OK	
7200 min	Summer 197.0	90 0.440	3	3.5 155.0	0 K	
8640 min	Summer 197.0	0.377	3	3.5 133.1	ΟK	
10080 min	Summer 196.9	0.321	3	3.4 113.3	O K	
15 min	Winter 196.8	380 0.230	3	8.4 81.1	ΟK	
	Storm	Rain	Flooded	Time-Peak		
	Event	(mm/nr)	(m ³)	(mins)		
			, /			
	15 min Summ	er 81.129	0.0	23		
	30 min Summ	er 58.507	0.0	37		
	60 min Summ	er 39.558 er 25.032	0.0	66 126		
	180 min Summ	er 20.082	0.0	186		
	240 min Summ	er 16.709	0.0	244		
	360 min Summ	er 12.862	0.0	362		
	480 min Summ	er 10.668	0.0	478		
	600 min Summ	er 9.224	0.0	530		
	1∠∪ min Summ 960 min Summ	er 8.189 er 6.787	0.0	600 732		
1	1440 min Summ	er 5.199	0.0	1008		
	2160 min Summ	er 3.974	0.0	1428		
2	2880 min Summ	er 3.281	0.0	1848		
4	1320 min Summ	er 2.502	0.0	2644		
	5760 min Summ	er 2.064	0.0	3456		
	7200 min Summ 3640 min Summ	er 1.77	0.0	4184 4936		
10	0080 min Summ	er 1.425	0.0	5656		
	15 min Wint	er 81.129	0.0	23		
	©198	32-2020 I	nnovyze			

RPS (Galway)						Page 2
Lyrr Building, IDA Business	3					
Mervue						
Galway, Ireland						Micco
Date 12/11/2021 11:26	E	Designed	bv PMGB			
File SHB3-BLN-CS-RPS-CA-0002		Checked	by DK			Drainage
		Source C	$\frac{n}{n}$	020 1		
		Jource c	UNCLUL Z	020.1		
Summary of Resul	ts for	r 100 ve	ar Retur	n Period	(+20%)	
					(
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth I	nfiltratio	on Volume		
	(m)	(m)	(1/s)	(m³)		
30 min Winter	196.98	0 0.330	3	.4 116.2	ОК	
60 min Winter	197.08	7 0.437	3	.5 154.1	ОК	
120 min Winter	197.20	2 0.552	3	.6 194.6	O K	
180 min Winter	197.27	0 0.620	3	.6 218.6	O K	
240 min Winter	197.31	6 0.666	3	.6 234.9	O K	
360 min Winter	197.37	5 0.725	3	.7 255.7	ОК	
480 min Winter	197.40	y U./59 8 0 770	3	.1 267.5	ΟK	
720 min Winter	197 43	0 0.788 8 0.788	3 २	.7 277 8	0 K	
960 min Winter	197.44	5 0.795	3	.7 280.4	O K	
1440 min Winter	197.44	3 0.793	3	.7 279.6	ОК	
2160 min Winter	197.40	8 0.758	3	.7 267.2	ΟK	
2880 min Winter	197.35	7 0.707	3	.7 249.3	O K	
4320 min Winter	197.24	1 0.591	3	.6 208.4	O K	
5760 min Winter	197.12	6 0.476	3	.5 167.7	ОК	
/200 min Winter	197.02	0 0.370	3	.5 130.3	OK	
10080 min Winter	196.84	6 0.196	3	.4 69.1	0 K	
G+	rm.	Rain	Flooded I	'ime-Peak		
Sto		(mm /h m)	17 a 1a	(
Eve:	nt	(mm/hr)	Volume (m ³)	(mins)		
Sto: Eve	nt	(mm/hr)	Volume (m³)	(mins)		
Even 30 min	nt Winter	(mm/hr)	Volume (m ³) 0.0	(mins) 37		
30 min 60 min	nt Winter Winter	(mm/hr) 58.507 39.558	Volume (m ³) 0.0 0.0	(mins) 37 66		
30 min 120 min 120 min	Minter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933	Volume (m ³) 0.0 0.0 0.0	(mins) 37 66 124		
30 min 60 min 120 min 180 min 240 min	Minter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240		
30 min 60 min 120 min 180 min 240 min 360 min	nt Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240 354		
30 min 60 min 120 min 180 min 240 min 360 min 480 min	Minter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240 354 466		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min	Minter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240 354 466 574		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min	winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778		
30 min 60 min 120 min 120 min 240 min 360 min 480 min 720 min 960 min 1440 min	<pre>winter Winter Winter</pre>	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 2556		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 1440 min 1440 min 2160 min	winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.201	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 240 min 280 min 1440 min 240 min 5760 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688		
30 min 60 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 1440 min 2160 min 2880 min 4320 min 5760 min 720 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184		
30 min 60 min 120 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	<pre>Minter Winter Winter</pre>	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	<pre>winter winter winter</pre>	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min 10080 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	the Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 4320 min 5760 min 7200 min 8640 min 10080 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 1086 1556 1996 2856 3688 4464 5184 5848		

RPS (Galway)		Page 3
Lyrr Building, IDA Business		
Mervue		
Galway, Ireland		Mirro
Date 12/11/2021 11:26	Designed by PMGB	
File SHB3-BLN-CS-RPS-CA-0002	Checked by DK	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 199.645

Infiltration Basin Structure

Invert Level (m) 196.650 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.15700 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15700

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000	371.2	0.800	371.2	0.801	0.0
-------	-------	-------	-------	-------	-----

Infiltration Design Calculations – Upper Catchment

RPS (Galway)						Page 1
Lyrr Building, IDA Bu	usiness					
Mervue						
Galway, Ireland						Micco
Date 12/11/2021 11:26		Designed	by PMGH	3		
File SHB3-BLN-CS-RPS-0	CA-0002	Checked	by DK			Drainage
Innovyze						
Summary of	f Results f	or 100 ye	ar Retu	rn Period	l (+20%)	
	Half Dra	in Time :	651 minut	es.		
Stor	m Max	. Mou	Marr	Maw	Status	
Ever	nt. Leve	l Depth 1	nfiltrati	ion Volume	Status	
	(m)	(m)	(1/s)	(m ³)		
15 min 30 min	Summer 196.8	355 0.205 343 0 293	3	3.4 /2.2	OK	
60 min	Summer 197.0	0.387	3	3.5 136.4	ОК	
120 min	Summer 197.1	36 0.486	3	3.5 171.4	ΟK	
180 min	Summer 197.1	93 0.543	3	3.6 191.5	O K	
240 min	Summer 197.2	231 0.581	3	3.6 204.9	O K	
360 min	Summer 197.2	276 0.626	3	3.6 220.9	ОК	
480 min 600 min	Summer 197.2	299 0.649	3	3.6 228.9	OK	
720 min	Summer 197.3	321 0.671	3	3.6 236.6	0 K	
960 min	Summer 197.3	331 0.681	3	3.6 240.1	ΟK	
1440 min	Summer 197.3	334 0.684	3	3.6 241.1	ΟK	
2160 min	Summer 197.3	318 0.668	3	3.6 235.7	O K	
2880 min	Summer 197.2	292 0.642	3	3.6 226.4	ОК	
4320 min 5760 min	Summer 197.2	26 0.576	3	3.6 203.2 3.5 178 7	OK	
7200 min	Summer 197.0	90 0.440	3	3.5 155.0	0 K	
8640 min	Summer 197.0	0.377	3	3.5 133.1	ΟK	
10080 min	Summer 196.9	0.321	3	3.4 113.3	O K	
15 min	Winter 196.8	380 0.230	3	8.4 81.1	0 K	
	Storm	Rain	Flooded	Time-Peak		
	Event	(mm/nr)	(m ³)	(mins)		
			, /			
	15 min Summ	er 81.129	0.0	23		
	30 min Summ	er 58.507	0.0	37		
	60 min Summ	er 39.558 er 25.032	0.0	66 126		
	180 min Summ	er 20.082	0.0	186		
	240 min Summ	er 16.709	0.0	244		
	360 min Summ	er 12.862	0.0	362		
	480 min Summ	er 10.668	0.0	478		
	600 min Summ	er 9.224	0.0	530		
	1∠∪ min Summ 960 min Summ	er 8.189 er 6.787	0.0	600 732		
1	1440 min Summ	er 5.199	0.0	1008		
	2160 min Summ	er 3.974	0.0	1428		
2	2880 min Summ	er 3.281	0.0	1848		
4	4320 min Summ	er 2.502	0.0	2644		
	5760 min Summ	er 2.064	0.0	3456		
	7200 min Summ 3640 min Summ	er 1.77	0.0	4184 4936		
10	0080 min Summ	er 1.425	0.0	5656		
	15 min Wint	er 81.129	0.0	23		
	©198	32-2020 I	nnovyze			

RPS (Galway)						Page 2
Lyrr Building, IDA Business	3					
Mervue						
Galway, Ireland						Micco
Date 12/11/2021 11:26	E	Designed	bv PMGB			
File SHB3-BLN-CS-RPS-CA-0002		Checked	by DK			Drainage
		Source C	$\frac{n}{n}$	020 1		
		Jource c	UNCLUL Z	020.1		
Summary of Resul	ts for	r 100 ve	ar Retur	n Period	(+20%)	
					(
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth I	nfiltratio	on Volume		
	(m)	(m)	(1/s)	(m³)		
30 min Winter	196.98	0 0.330	3	.4 116.2	ОК	
60 min Winter	197.08	7 0.437	3	.5 154.1	ОК	
120 min Winter	197.20	2 0.552	3	.6 194.6	O K	
180 min Winter	197.27	0 0.620	3	.6 218.6	O K	
240 min Winter	197.31	6 0.666	3	.6 234.9	O K	
360 min Winter	197.37	5 0.725	3	.7 255.7	ОК	
480 min Winter	197.40	y U./59 8 0 770	3	.1 267.5	ΟK	
720 min Winter	197 43	0 0.788 8 0.788	3 २	.7 277 8	0 K	
960 min Winter	197.44	5 0.795	3	.7 280.4	O K	
1440 min Winter	197.44	3 0.793	3	.7 279.6	ОК	
2160 min Winter	197.40	8 0.758	3	.7 267.2	ΟK	
2880 min Winter	197.35	7 0.707	3	.7 249.3	O K	
4320 min Winter	197.24	1 0.591	3	.6 208.4	O K	
5760 min Winter	197.12	6 0.476	3	.5 167.7	ОК	
/200 min Winter	197.02	0 0.370	3	.5 130.3	OK	
10080 min Winter	196.84	6 0.196	3	.4 69.1	0 K	
G+	rm.	Rain	Flooded I	'ime-Peak		
Sto		(mm /h m)	17 a 1a	(
Eve:	nt	(mm/hr)	Volume (m ³)	(mins)		
Sto: Eve	nt	(mm/hr)	Volume (m³)	(mins)		
Even 30 min	nt Winter	(mm/hr)	Volume (m ³) 0.0	(mins) 37		
30 min 60 min	nt Winter Winter	(mm/hr) 58.507 39.558	Volume (m ³) 0.0 0.0	(mins) 37 66		
30 min 120 min 100 min	Minter Winter Winter	(mm/hr) 58.507 39.558 25.933	Volume (m ³) 0.0 0.0 0.0	(mins) 37 66 124		
30 min 60 min 120 min 180 min 240 min	Minter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240		
30 min 60 min 120 min 180 min 240 min 360 min	nt Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240 354		
30 min 60 min 120 min 180 min 240 min 360 min 480 min	Minter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240 354 466		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min	Minter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 37 66 124 182 240 354 466 574		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min	winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778		
30 min 60 min 120 min 120 min 240 min 360 min 480 min 720 min 960 min 1440 min	<pre>winter Winter Winter</pre>	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 2556		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 1440 min 1440 min 2160 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.201	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856		
30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 240 min 280 min 1440 min 240 min 5760 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688		
30 min 60 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 1440 min 2160 min 2880 min 4320 min 5760 min 720 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184		
30 min 60 min 120 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	<pre>Minter Winter Winter</pre>	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	<pre>ht winter Winter</pre>	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min 10080 min	Minter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	the Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 778 1086 1556 1996 2856 3688 4464 5184 5848		
30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 4320 min 5760 min 7200 min 8640 min 10080 min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	(mm/hr) 58.507 39.558 25.933 20.082 16.709 12.862 10.668 9.224 8.189 6.787 5.199 3.974 3.281 2.502 2.064 1.779 1.577 1.425	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 37 66 124 182 240 354 466 574 678 1086 1556 1996 2856 3688 4464 5184 5848		

RPS (Galway)		Page 3
Lyrr Building, IDA Business		
Mervue		
Galway, Ireland		Mirro
Date 12/11/2021 11:26	Designed by PMGB	
File SHB3-BLN-CS-RPS-CA-0002	Checked by DK	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 199.645

Infiltration Basin Structure

Invert Level (m) 196.650 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.15700 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15700

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000	371.2	0.800	371.2	0.801	0.0
-------	-------	-------	-------	-------	-----

Appendix D

Hydrocarbon Interceptor – Brochure

Bypass NSB RANGE

APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Kingspan Klargester Bypass separators and certified their performance in relation to their flow and process performance assessing the effluent gualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity. Oil storage volume. .
- Silt storage capacity. **.**

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

.

Coalescer.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

FEATURES

- Light and easy to install.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- н. Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).

ire less

- н. Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model). н.

To specify a nominal size bypass separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped.
- The drain invert inlet depth.
- Pipework type, size and orientation.

STANDARD DRAINAGE UNIT FLOW PEAK FLOW STORAGE UNIT UNIT DIA. ACCESS BASE TO BASE TO STANDARD MIN. INLET NOMINAL CAPACITY (litres) INLET INVERT FALL ACROSS (l/s) RATE (I/s) AREA (m²) LENGTH (mm) (mm) SHAFT OUTLET INVERT PIPEWORK OIL SIZE DIA. (mm) INVERT DIA SILT (mm) (mm) (mm) NSBP003 NSBP004 NSBP006 NSBE010 NSBF015 NSBE020 NSBE025 NSBE030 NSBE040 NSBE050 NSBF075 NSBF100 NSBE125

SIZES AND SPECIFICATIONS

Rotomoulded chamber construction GRP chamber construction * Some units have more than one access shaft – diameter of largest shown.

Appendix E

Confirmation of Feasibility – Irish Water

Avril Hill County Buildings Station Road Wicklow A67FW9

22 October 2019

Dear Avril Hill,

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: Connection Reference No CDS19007276 pre-connection enquiry -Subject to contract | Contract denied

Connection for Housing Development of 100 units at Burgage More, Blessington, Wicklow.

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Burgage More, Blessington, Wicklow.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:

A. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services.

B. You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed and appropriate connection fee paid at a later date.

Water

A section of the existing 80mm water network adjacent to the site will have to be upsized to 150mm in order to facilitate the development. The specifics of the connection would be assessed at connection application stage. Irish Water does not currently have any plans to carry out the works required to provide the necessary upgrades. Should you wish to have such upgrade works progressed, Irish Water will require you to provide a contribution of a relevant portion of the costs for the required upgrades, please contact Irish Water to discuss this further.

Wastewater

In order to accommodate the proposed wastewater connection at the development, upgrade works are required to increase the capacity of the Blessington Wastewater Treatment Plant. Irish Water currently has a project on our current investment plan, which received planning permission in Q2 2019, which will provide the necessary upgrade and capacity. The proposed upgrade works will increase the capacity to accommodate 9,000 PE. This upgrade project is scheduled to be completed by Q4 2020 (this may be

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Brendan Murphy, Michael G. O'Sullivan, Maria O'Dwyer, Yvonne Harris Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363 subject to change) and the proposed connection could be completed as soon as possibly practicable after this date.

Please note that it will be necessary to comply with Irish Water's wayleave and diversion requirements in relation to any assets located within the subject site. Any proposed infrastructure located on third party lands will require a wayleave in favour of Irish Water.

All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details. A design proposal for the water and/or wastewater infrastructure should be submitted to Irish Water for assessment. Prior to submitting your planning application, you are required to submit these detailed design proposals to Irish Water for review.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Fionán Ginty from the design team on 01 89 25734 or email fginty@water.ie. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

M Duyse

Maria O'Dwyer Connections and Developer Services

Appendix F

Hydrant Testing Results – SES Water Management

rpsgroup.com

Hydrant Testing Report

Social Housing Bundle 3 Lot 1, Blessington, Co. Wicklow

Client:	RPS
Site Contact:	Desmond Keane
Project:	Hydrant Testing Social Housing Bundle 3 Lot 1, Blessington, Co. Wicklow
Engineer:	Conor Malone
Technician:	James Curran
Start/Finish of Survey	August 2021

Contents

1	Scop	pe of Works	4
2	Hyd	rant Specifications & Flow Requirements	4
	2.1	Guidelines for Fire Flow Requirement	4
	2.2	Key Aspects of Fire Hydrant Specification	5
3	Fire	Hyrdant Condition Survery	6
4	Fire	Hydrant Flow & Pressure Testing	7
	4.1	7-Day Pressure Logging	7
	4.2	Fire Hydrant Flow & Pressure Testing	8
5	Fire	Hydrant Location Plan	9
A	ppendic	ces	9
	Appen	dix A - Fire Hydrant Condition Survey	9

1 Scope of Works

SES Water Management was requested by RPS Consulting Engineers to carryout flow and pressure testing on hydrants for the Social Housing Bundle 3 Lot 1 project location in Blessington, Co. Wick-low.

Pressure logging of the hydrants was carried out over a 7-day period. Flow testing was then carried out using a digital flow meter with static and residual pressures also being recorded.

2 Hydrant Specifications & Flow Requirements

2.1 Guidelines for Fire Flow Requirement

Housing Developments

Housing Developments with units of detached or semi-detached houses of not more than two floors should have a supply capable of delivering a minimum of 8 l/s (480 l/min) OR multi occupied developments with units of more than 2 floors should have a water supply capable of delivering a minimum of 20 to 35 l/s (1,200 to 2,100 Litres/minute).

Village Hall or the like

Should have a water supply capable of delivering 15 Litres per second (900 Litres/minute) through any single hydrant on the development.

Primary School and/or Single Story Health Centre or the like should have a water supply capable of delivering 20 Litres per second (1,200 Litres/minute) through any single hydrant on the development.

Secondary Schools, Colleges, Large Health & Community Facilities or the like

Should have a water supply capable of delivering 35 Litres per second (2,100 Litres/minute) through any single hydrant on the development.

Industry

Up to one hectare, facility should have 20 Litres per second (1,200 Litres/minute) Between one and two hectares, facility should have 35 Litres per second (2,100 Litres/minute)

2.2 Key Aspects of Fire Hydrant Specification

SURFACE:

Hydrants should be located in the footpath or grass margin adjoining the roadway. Where it is located in the grass, the periphery of the box should be concreted.

The surface box and concrete surround should be kept over the level of the adjoining surface to prevent polluted water from entering the hydrant pit.

FRAME:

Hydrant chambers should have a cast iron surface box. The surface box should be bedded in mortar on the chamber walls, and if the hydrants are located other than on a footway or roadway, they should be surrounded by 150mm concrete of 100mm in depth.

COVER:

The hydrant cover should provide a 375mm x 225mm clear opening and should be placed centrally over the hydrant to permit freedom of affixing stand-pipe and valve key.

PIT:

The hydrant pit / chamber should provide not less than 75mm clearance around the hydrant body. Hydrant pits should be constructed to be self-draining. The pit should be clean and free of all debris.

OUTLET DEPTH:

The depth of the hydrant outlet should not exceed 350mm below finished ground level, with the top of the spindle being 75mm minimum to 225mm maximum below finished surface to footpath.

MARKER:

A hydrant indicator plate should be fitted on a wall or marker post at 450mm over ground level. They should show the diameter of the water main and the distance in metres of the hydrant from the marker.

TESTING:

Fire hydrants should be tested on an annual basis. The Fire Hydrant condition should be assessed to ensure it meets the required criteria. The flow and pressure should be recorded and reported in writing. Calibration certificates must be available for all test Equipment used.

3 Fire Hyrdant Condition Survery

There are 4 Hydrants on the school grounds and all were reviewed to assess that they meet the standards in accordance with the BS5360 / BS9990.

Appendix A provides full details of the condition survey which was completed on site. The items below are the main findings of the fire hydrant condition survey;

- FH1 is missing the spindle
- FH1 & FH2 exceed the outlet depth specification but both hydrants are easily accessible
- FH1 & FH3 have no marker plates to help identify/locate the hydrants
- All 4 hydrants are bayonet LUG connections
- All frames, covers and pits are in good condition
- All hydrants were operable.

FH2

4 Fire Hydrant Flow & Pressure Testing

4.1 7-Day Pressure Logging

Pressure loggers were deployed on the Fire Hydrants on 16th August 2021 to record pressure over a 7-day logging period. The graph below shows the pressure logging results which show the day night variation in pressure.

Figure 2: 7-Day Static Pressure Logging Results

Based on the downloaded pressure data, the static pressure varies from 1.3 bar at night to 2.4 bar during the day. For the purposes of hydrant testing, the time/duration of the minimum static pressure is between 07:30hrs to 18:00hrs.

4.2 Fire Hydrant Flow & Pressure Testing

Flow testing includes measuring the static pressure at the test hydrant before the flow testing is carried out. A digital hydrant flow meter is then connected to the hydrant to record flow rates in litres per minute over a 5-minute period. The flow rates detailed below, is the average maximum sustainable flow based on the 5-minute flow test.

Flow testing was carried out on 23rd August 2021 at 10:10am and the results are detailed below.

FH No.	Flow Rate L/Min	Static Pressure (bar)	Residual Pressure (bar)	
FH1	862	2.0	1.1 At FH2	

Table 1: Fire Hydrant Flow & Pressure Test Results

Figure 1: Fire Hydrant Flow Test Results

As can be seen from the results the hydrants have a flow rate from 880 l/min to 850 l/min.

5 Fire Hydrant Location Plan

Appendices

Appendix A - Fire Hydrant Condition Survey

FH No	Surface	Cover/ Frame	Pit	Туре	Depth (mm)	Marker/ Plate	Canary Yellow	Spindle	Operating	Comment
1	Road	Good	Poor	LRT	150	No	No	Good	Yes	
2	Concrete	Good	Poor	Lugs	500	Yes	No	Good	Yes	

Appendix G

Aquacell – Cellular Storage System

rpsgroup.com

WATER MANAGEMENT

AquaCell systems

Product and installation manual

Introduction to SuDS

Continuing urban development, a changing climate and the consequences of increased rainfall are all increasingly prominent issues on the political and environmental agenda and all drive the need to actively manage excessive rainfall across new and existing developments through the use of Sustainable Drainage Systems (SuDS).

Designed correctly drainage systems can assist in delivering sustainable development whilst improving the spaces where we live, work and play.

The SuDS approach to managing water takes account not just of how water quantity is managed but also considers how improvements to water quality can be delivered as well as the creation of habitats promoting biodiversity and amenity for the community.

Good SuDS aim to mimic nature and manage rainfall close to where it falls. They are designed to move and attenuate water within the development before it is released into water courses. Water is stored within the development where is allowed to infiltrate into the ground or is released at a controlled rate to prevent issues downstream.

The CIRIA SuDS Manual gives guidance on all areas of SuDS and focuses on the cost-effective planning, design, construction, operation and maintenance of SuDS.

Which SuDS components are best?

SuDS should help maximise amenity and biodiversity, whilst also delivering key objectives to manage flood risk and water quality For any given site, SuDS should be considered as sequence of components designed to efficiently drain surface water whilst minimising pollution. Selection of which SuDS components is best for each development is dependent on the site specific requirements.

How can Wavin help with SuDS projects?

Wavin is well qualified to advise on how to comply with current and emerging regulation. We can aid specifiers, developers and contractors in responding to legislative demands as they pertain to flooding, sewage, urban drainage and sustainable resources use.

In particular, the proven qualities and performance of AquaCell systems not only support the achievement of SuDS, they can also help reinforce and enhance planning applications and enable development to proceed.

CIRIA SuDS Design Source: The SuDS Manual (CIRIA)

Keeping you on top of legislation

Flood and Water Management Act 2010

The Flood and Water Management Act was designed to reduce the risk of flooding and its consequences by providing for better, more comprehensive and co-ordinated water management, embracing groundwater, surface water and coastal erosion risk. Schedule 3 of the act gives DEFRA responsibility for establishing national standards for sustainable drainage and empowers local authorities to manage local flood risk by adopting and maintaining sustainable drainage schemes. In January 2019 Schedule 3 was implemented by the Welsh Government. This legislation effectively makes the use of SuDS mandatory on new developments with the aim of reducing flood risk and improving water quality. The new standards for Wales support the 'four pillars' of SuDS.

Sewers for Adoption

In England the framework for the delivery of SuDS in the absence of Schedule 3 is through a revision to Sewers for Adoption to include some SuDS components as adoptable by the Water and Sewage Companies. The document, currently with Ofwat for approval, is expected to be introduced early 2020. When it comes into force it will be the only guide to the standards that sewers must meet if they are to be adoptable by WaSCs in England. The new document will, for the first time, offer guidance on SuDS components (although not all) that can be adopted by Water and Sewerage Companies with standards on the flood risk performance that is expected.

The Water Environment and Water Services (WEWS) (Scotland) Act 2003

In Scotland WEWS makes Scottish Water responsible for SuDS that deal with the run-off from roofs and any paved ground surface within the property boundary. In order to deliver this SuDS need to be designed to Scottish Water's specifications as set out in their manual, Sewers for Scotland v4.0. In addition, the law makes the use of SuDS obligatory when dealing with surface water drainage from all new developments.

The EU Water Framework Directive

Nearly half the EU population lives in 'water-stressed' countries, caused by high extraction from freshwater sources, and demand is growing all the time. The EU Water Framework Directive introduces a new legislative approach designed to better manage and protect water resources, based not on national orpolitical boundaries but on the natural catchment of river basins.

Building Regulation Part H (Drainage and Waste Disposal)

Building Regulation Part H embraces the guidelines for drainage and waste disposal that must be met in the UK. Although Part H extends to rainwater drainage and solid waste storage, waste drainage issues are to the fore. The Building Regulations are designed to ensure that all foul water is properly disposed of to maintain a decent level of sanitation, promoting both personal and environmental health. The regulations also highlight the importance of pollution prevention, working sewage infrastructure and sewage maintenance. With regards to stormwater, Building Regulations Approved Document H3 stipulates that adequate provision should be made for rainwater to be carried from the roof of a building to either a soakaway, water course or sewer.

National Planning Policy Framework

Section 14 of the National Planning Policy Framework sets out policy to ensure that flood risk is taken into account at all stages of the planning process and that inappropriate development in areas at risk of flooding is avoided. The policy directs development away from areas of highest risk and where new development is, exceptionally necessary in such areas, aims to make it safe without creating an increase in flood risk elsewhere and, where possible, reduce flood risk overall. It also states developments should only be allowed in an area of flood risk if it incorporates sustainable drainage systems, unless there is clear evidence that these would be inappropriate.

Overview

The AquaCell range of geocellular systems are a fully tried and tested, BBA approved, modular technique for managing excessive rainfall.

Applications

The AquaCell range can be used as either a temporary storage tank or as a soakaway, and is suitable for applications including:

- Landscaped areas
- Parks
- Domestic gardens
- Residential developments
- O Car parks & roads
- Industrial/commercial areas

The AquaCell range

There are three types of AquaCell unit. Each can be used as a standalone system or different unit types can be mixed and matched together in layers to value engineer the most cost effective solution.

All AquaCell units have identical dimensions ($1m \times 0.5m \times 0.4m$), but they are manufactured to perform differently. The type of unit, or combination of units required will depend on factors such as the load application, overall installation depth and site conditions.

Features and benefits

The following are applicable to all AquaCell units:

- BBA Approved certificate No. 03/4018
- Modular, lightweight and versatile
- Easy to handle and quick to install
- Proven clip and peg connection system
- 95% void (each unit holds 190 litres of water)
- O Can be brick-bonded for extra stability
- Units can be mixed and matched together for optimum performance
- Full range of ancillaries
- O Can be used as integral part of a SuDS scheme

Environmental benefits

In addition, the AquaCell range can also offer the following environmental benefits:

- Reduced flooding risk
- Controlled release of stormwater into watercourses or, where permitted, existing sewer systems
- Recharging of local groundwater (if infiltration/soakaway application)
- Aerobic purification to improve water run-off quality
- Sustainable, cost effective management of the water environment

Eco

Eco is manufactured from specially reformulated, recycled material and has been designed for shallow, non-trafficked, landscape applications.

Core-R

Core-R has been designed for use in deep applications, subject to both regular and heavy traffic loadings, such as cars and HGV's.

AquaCell Configurator Tool

Optimise tank and soakaway designs with the AquaCell Configurator Tool

The AquaCell Configurator tool aids and speeds the efficient design of stormwater tank or soakaway solutions. The tool guides users through a step-by-step specification process and, based on responses, will recommend the optimum design, based on the loadings, depths and site conditions of each project.

The tool generates a PDF of the design for easy download and can store the data online for future reference. To start using the tool or to learn more visit: **myportal.wavin.co.uk/tools**

Plus-R

Plus-R has been designed primarily for use in applications where inspectability is required, and is suitable for use in all applications from landscaped areas to heavily trafficked areas including HGV.

AquaCell Eco

Application

AquaCell Eco is manufactured from specially reformulated, recycled material and has been specifically designed for shallow, non-trafficked, landscaped applications. AquaCell Eco is **NOT** suitable for locations subject to high water tables.

AquaCell Eco is typically suitable for installations to a maximum depth of 2.68 metres, to the base of the units from ground level, with a minimum cover depth of 0.3 metres, (CIRIA's recommendation, is to allow a cover depth of 0.5 metres in applications where a ride on mower may be used).

Any installation using AquaCell Eco must **NOT** be subjected to additional loading at any time. Trafficking by construction plant on site, including mechanical equipment, must be avoided.

If trafficking of the buried tank by construction plant or, other vehicles is unavoidable, the installation should be constructed using AquaCell Core-R units (see page 9).

The width of an AquaCell Eco installation should not exceed 12 metres to allow for mechanical backfilling without loading. There is no limit to the length of the installation.

Features and benefits

- O Manufactured from specially reformulated, recycled material
- Suitable for both soakaway and attenuation applications
- Proven vertical loading capacity of: 21.3 tonnes/m² (213kN/m²)
- Proven lateral loading capacity of: 5.2 tonnes/m² (52kN/m²)
- Integral "hand holds" for ease of carrying/handling
- BBA approved Certificate No 03/4018

Material: Reformulated polypropylene

Nominal	Part	Dimensions (mm)			
size (mm)	number	W	н	L	
160	6LB025	500	400	1000	

Typical soil type	Soil weight kN/m³	Angle of internal friction ϕ (degrees) ^{2, 3}	Landscaped areas
Over-consolidated stiff clay	20	24	1.53
Silty sandy clay	19	26	1.68
Loose sand and gravel	18	30	2.08
Medium dense sand and gravel	19	34	2.35
Dense sand and gravel	20	38	2.68

Maximum installation depths - to base of units (m)¹

(1) These values relate to installations where the groundwater is a minimum of one metre below the base of the excavation.(2) AquaCell Eco units should not be used where groundwater is present.

(3) 0.5m cover is required where a ride-on mower may be used.

Assumptions made: 📀 Ground surface is horizontal

• Shear planes or other weaknesses are not present within the structure of the soil.

Source: BBA

AquaCell Core-R

Application

AquaCell Core-R has been designed for use in deep applications, subject to regular and heavy traffic loadings, e.g. cars and HGV's. AquaCell Core-R can also be used for deep soakaways and landscaped applications.

Typically for use down to depths of 6.68m in landscaped areas (6.43m trafficked by cars) to the base of the units from ground level, in best soil conditions.

Trafficking by heavy construction plant on site, including mechanical equipment, must be avoided until the minimum cover depth of 1.11 metres is in place.

Features and benefits

- Suitable for regular and heavy traffic loadings
- Proven vertical loading capacity of: 66.9 tonnes/m² (669 kN/m²)
- Proven lateral loading capacity of: 12.3 tonnes/m² (123kN/m²)
- BBA approved Certificate No 03/4018
- Ideal for all types of shallow and deep projects including major attenuation and infiltration schemes

Nominal	Part	Dimensions (mm)			
size (mm)	number	W	Н	L	
160	6LB150	500	400	1000	

Maximum installation depths – to base of units (m)¹

Typical soil type	Soil weight kN/m ³	Angle of internal friction ϕ (degrees) ^{2,3}	Landscaped areas	Vehicle mass <9 tonnes ^{4, 5}	Vehicle mass <44 tonnes
Over-consolidated stiff clay	20	24	3.85	3.61	3.36
Silty sandy clay	19	26	4.35	4.09	3.83
Loose sand and gravel	18	30	5.34	5.06	4.78
Medium dense sand and gravel	19	34	5.94	5.68	5.41
Dense sand and gravel	20	38	6.68	6.43	6.18

(1) Without groundwater present below base of units – AquaCell Core-R may be used where groundwater is present, contact Wavin for technical advice.

(2) Loosening of dense sand or softening of clay by water can occur during installation. The designer should allow for any such likely effects when choosing an appropriate value of φ.

(3) The design is very sensitive to small changes in the assumed value of φ, therefore, it should be confirmed by a chartered geotechnical engineer. In clay soils, it may be possible to utilise cohesion in some cases.

(4) Applicable for car parks or other areas trafficked only by cars or occasional refuse collection trucks or similar vehicles (typically one per week).

(5) This category should be used when considering landscaped areas that may be trafficked by ride on mowers.

Assumptions made: O Ground surface is horizontal

 \odot Shear planes or other weaknesses are not present within the structure of the soil.

Source: BBA

AquaCell Plus-R

Application

AquaCell Plus-R has been designed primarily for use in applications where inspection is required. It is suitable for use in all applications from landscaped areas to heavily trafficked areas (for vehicles up to 44 tonnes). The units can be used in combination with AquaCell Core-R (and Eco if there is at least one layer of Core-R in between the Plus-R and Eco layer).

Extra lateral loading capacity allows installation at greater depths. Integral inspection channels in each unit combine to create viewing channels for the full length of the installed structure.

Typically for use down to depths of 7.82m in landscaped areas (7.57m trafficked by cars and 7.3m trafficked by HGV's) to the base of the units from ground level, in best soil conditions. Trafficking by heavy construction plant on site, including mechanical equipment, must be avoided until the minimum cover depth of 1.30 metres is in place.

Features and benefits

- Suitable for extra deep installations
- Inspectable (supplied with end cap for use when an inspection channel is not required)
- Proven vertical loading capacity of: 70.2 tonnes/m² (702 kN/m²)
- Proven lateral loading capacity of: 15.1 tonnes/m² (151 kN/m²)

Maximum installation depths - to base of units (m)¹

Material: Polypropylene

Nominal	Part	Dimensions (mm)			
size (mm)	number	W	Н	L	
160	6LB200	500	400	1000	

Typical soil type	Soil weight kN/m ³	Angle of internal friction ϕ (degrees) ^{2,3}	Landscaped areas	Vehicle mass <9 tonnes ^{4, 5}	Vehicle mass <44 tonnes
Over-consolidated stiff clay	20	24	4.67	4.42	4.17
Silty sandy clay	19	26	5.03	4.78	4.53
Loose sand and gravel	18	30	5.86	5.61	5.36
Medium dense sand and gravel	19	34	6.87	6.62	6.37
Dense sand and gravel	20	38	7.82	7.57	7.30

(1) Without groundwater present below base of units – AquaCell Plus-R may be used where groundwater is present, contact Wavin for technical advice.

(2) Loosening of dense sand or softening of clay by water can occur during installation. The designer should allow for any such likely effects when choosing an appropriate value of φ.

(3) The design is very sensitive to small changes in the assumed value of φ, therefore, it should be confirmed by a chartered geotechnical engineer. In clay soils, it may be possible to utilise cohesion in some cases.

(4) Applicable for car parks or other areas trafficked only by cars or occasional refuse collection trucks or similar vehicles (typically one per week).

(5) This category should be used when considering landscaped areas that may be trafficked by ride on mowers.

Assumptions made: 📀 Ground surface is horizontal

Shear planes or other weaknesses are not present within the structure of the soil.

AquaCell Plus-R: for inspectability

By aligning AquaCell Plus-R units end-to-end, full length viewing channels can be created – allowing for CCTV inspection if required. These are created in the bottom layer of an AquaCell tank installation.

The units can be used in combination with AquaCell Core-R (and with Eco if there is at least one layer of AquaCell Core-R in between the Plus-R and Eco layer).

NOTE: For any AquaCell Plus-R units on the perimeter of a structure that are NOT required for inspection access, the open ends of the integral inspection tunnels should be fitted with the end caps provided.

Inspection chambers

An inspection chamber should precede the inlet pipework for the AquaCell structure.

A silt trap or hydro-dynamic separator prior to the inspection chamber is also recommended.

For on-line installations the following Chambers are recommended:

- Down to 3m Wavin Non-Entry Inspection Chambers
- Down to 5m Wavin Range 600 Inspection Chambers, or a traditional manhole*

*where inlet pipework is replaced by AquaCell units acting as flow conduit.

For off-line installations:

- Manhole with in-built flow control

Recommendation: If installing any Wavin Non-Entry Inspection Chamber, deeper than 1.2 metres, ensure that the cover and frame includes a 350mm restrictor to prevent man entry.

Inspection and maintenance

CCTV inspection at every inspection point is recommended: - after every major storm

 at regular intervals according to the specific maintenance plan for the site

Silt traps prior to inlet pipework should be routinely inspected and cleaned out to minimise debris reaching the tank. It is important to prevent construction silt from entering the AquaCell structure.

Inspectability scenarios

AquaCell Plus-R viewing channel

Trafficked tank installation with inspection chambers

End cap for when an inspection channel is not required -----

Design guidance

Infiltration or attenuation?

The AquaCell range can be used either as:

- A soakaway whereby the units will be installed in suitable pervious soils so the units can be wrapped in a geotextile to allow infiltration of the stormwater into the surrounding ground, or
- As an attenuation tank in impervious ground (e.g. clay) where infiltration is not possible, here the units are encapsulated in a geomembrane (which is in turn wrapped in a protective geotextile layer) so that the structure can hold the stormwater temporarily until local drainage flows can accept it for normal disposal at a permissible outflow rate.

Large scale AquaCell Core-R storage tank

Domestic AquaCell Core-R soakaway

Site assessment

Ground conditions may be established as part of a geotechnical assessment. This may include tests for infiltration and ground water level.

If there is no confirmation that such assessments have been conducted, or resulting conclusions are unavailable, a trial pit will be required in accordance with BRE 365.

For further information and guidance, please contact the Wavin Technical Design Team.

Infiltration (soakaways)

According to the principals of SuDS, wherever possible stormwater should be drained back into the ground via a soakaway as the first priority. A site must meet BOTH of the following criteria for infiltration to be possible:

- The underlying soil surrounding the proposed installation is sufficiently permeable
- The seasonally high water table is a minimum of 1 metre below the base of the proposed installation

If either of these criteria is not met, or cannot be confirmed for any reason, a soakaway system may not be suitable for the application, in which case a storage tank must be used.

Attenuation (storage tanks)

A storage tank may be designed to be online or offline (see pages 26-31 for typical details). However, if the site is subject to groundwater or a high water table, it is important to ensure that the tank is not vulnerable to flotation. Sufficient weight from soil, or other covering placed over the AquaCell units, must be sufficient to counter any buoyancy uplift force from the rising groundwater level.

Important design considerations for geocellular structures

Rising rainfall levels and increased focus on SuDS compliance, have led to an increase in the use of modular units to create underground structures for infiltration or the temporary storage of stormwater.

However, not all currently available systems have the proven performance characteristics necessary to meet the wide range of complex underground geocellular applications.

The Wavin range of AquaCell units provide assured performance, since all strength and hydraulic capabilities have been verified by independent testing and all units are fully BBA approved.

To guarantee the structural integrity of an engineered drainage system, any underground structure must be strong enough to support the loads to which it will be subjected without any unacceptable deflection.

The correct choice of geocellular unit must have appropriate proven top (vertical) and side (lateral) load bearing capacity and deflection characteristics to suit site conditions.

The five key site considerations to be noted when designing a geocellular structure are:

- 1. Depth of cover (See page 14)
- 2. Soil type
- 3. Surface finishing
- 4. Presence of groundwater
- 5. Type of traffic/loading

The combination of these 5 factors effectively means that the required characteristics of a geocellular structure to be installed under a trafficked location (for example) will be very different from that under a landscaped/low-loaded location.

Two typical examples are given below.

Example A: Landscaped/non-trafficked location and 0.3m cover depth. Typically requires minimum vertical strength of 17.5 tonnes/m²

Example B: Car park with occasional light delivery traffic and between 0.5 - 0.7m cover depth. Typically requires minimum vertical strength of 40 tonnes/m²

Design guidance

Hydraulic design

All AquaCell units have identical dimensions: 1m x 0.4m x 0.5m, have a nominal void ratio of 95% and each holds 190 litres of water. Hydraulic calculations are accordingly the same for AquaCell Eco, Core-R and Plus-R.

Structural design however, requires careful consideration of loading factors specific to each location – see CIRIA C680 or CIRIA C737 for further guidance (we recommend using the BPF Guide Designing Geocellular Drainage Systems to CIRIA Report C737 alongside.)

Structural design – installation and cover depths

Each AquaCell unit has been designed to have specific loading capacities (see pages 8-10) that define the maximum depth parameters for which they are suitable.

Minimum depth of cover varies according to whether or not the installation will be subject to trafficking by cars/HGVs.

However, in some situations, installations may have to be located with greater cover depths. Reasons may include:

- Deep-running drainage network
- Other buried services running above tank location
- Installation into banked/ sloping ground
- Upper layer of clay preventing infiltration

The table shows a summary of typical cover depths and installation depths as a guide.

Typical minimum cover depths and maximum installation depths

	Minimum cover depths (m)				
Location type	AquaCell Eco	AquaCell Core-R	AquaCell Plus-R		
Landscaped/non-trafficked areas ²	0.30	0.30	0.30		
Car parks, vehicle mass up to 9 tonnes ¹	n/a	0.60	0.69		
HA/HGV loading up to 60 tonnes	n/a	1.11	1.30		
	Maximum	installation de	epths (m)³		
Maximum depth to base of unit (Landscaped)	2.68	6.68	7.82		
Maximum depth to base of unit – vehicle mass up to 9 tonnes	n/a	6.43	7.57		
Maximum depth to base of unit – vehicle mass up to 44 tonnes	n/a	6.18	7.30		

- (1) For specific advice on cover depths for heavier loadings/HGV applications, contact Wavin Technical Design on 0844 856 5165.
- (2) 0.30m is minimum depth for AquaCell in landscaped applications. 0.5m cover is recommended in applications where ride-on mowers may be used. If construction plant is to be used on site, extra protection may be needed.
- (3) Allowable maximum depth to base of bottom layer of units is dependent on soil type, angle of shearing resistance, loadings, and groundwater level. The above depths are based on 38° angle of shearing resistance and no groundwater.

In trafficked applications it is recommended that the height of any tank should not exceed 2m (5 units). If you require a tank that exceeds this, please contact Wavin Technical Design for guidance:

T: 0844 856 5165 E: technical.design@wavin.co.uk

Minimum cover and maximum installation depths to base of units from ground level, in best soil conditions

This chart shows how deep each unit can be used for different applications in best soil conditions.

Note: The AquaCell units can also be used in combination with each other, see page 16 for details.

Design guidance

Mix and match

Although all AquaCell units have identical dimensions, and a high nominal void ratio of 95%, they are manufactured to perform at a range of depths, dependent on soil type, angle of shearing resistance, loading and ground water levels. For optimum performance the units can be mixed and matched (in layers) to value engineer the most effective design (in cost and performance terms) for each installation. For example, in a landscaped application if you needed to install a tank or soakaway that is deeper than 2.7m, you could install layers of AquaCell Core-R underneath the AquaCell Eco. See below illustrations showing examples of how the AquaCell units can be mix and matched together. For advice on how to optimise a tank or soakaway design using more than one type of AquaCell please contact Wavin Technical Design.

Note: AquaCell Eco cannot be used directly with AquaCell Plus-R therefore there must be a layer of AquaCell Core-R between them.

Typical examples of mix and match with AquaCell

Landscaped	Cars	HGV's
Key:	CORE-R	PLUS-R

Brick bonding - for extra stability

When assembling a geocellular structure that comprises two or more layers, it is recommended that AquaCell units are placed in a 'brick-bonded' configuration for extra stability.

This helps minimise continuous vertical joints in the assembly, and gives the structure extra stability.

A significant advantage of AquaCell unit design is that brick bonding placement does not require extra connectors.

All three AquaCell units may be placed in this way, unless inspection channels and cleaning access are required using AquaCell Plus-R.

AquaCell Plus-R units incorporate integral inspection channels. These are designed for combined alignment to create viewing tunnels at the base of an assembled structure (see page 11).

Example of AquaCell being brick bonded

Discover our broad portfolio at **www.wavin.co.uk**

Water management | Plumbing and heating | Waste water drainage Water and gas distribution | Datacom

Wavin is part of Orbia, a community of companies working together to tackle some of the world's most complex challenges. We are bound by a common purpose: To Advance Life Around the World.

Wavin Limited Registered Office | Edlington Lane | Doncaster | DN12 1BY Tel. 0844 856 5152 | www.wavin.co.uk | info@wavin.co.uk

Appendix H

CFRAM Mapping

rpsgroup.com

